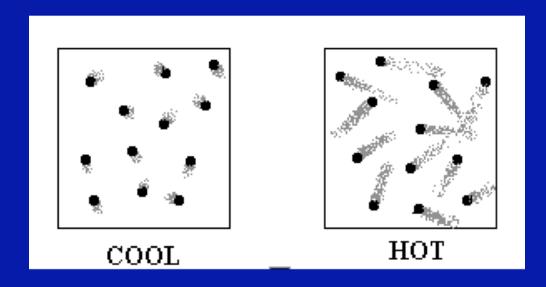
The Effects of Temperature on Life


Corien Bakermans, PhD Michigan State University

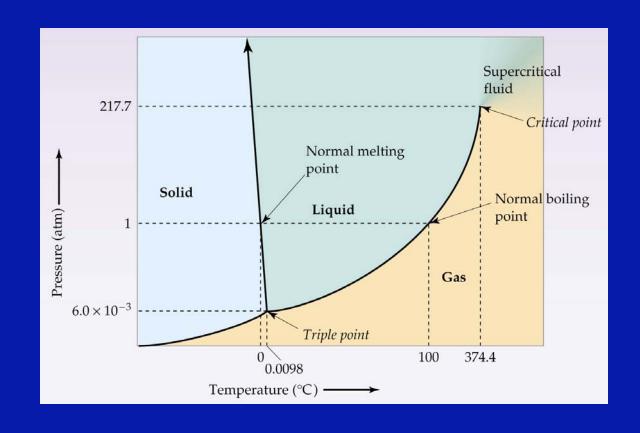
Overview

- Temperature—Limitations
- Limits of Life—Thermophiles and Psychrophiles
- Challenges and Solutions
 - Nucleic Acids
 - Proteins
 - Cell Membranes
 - Miscellaneous
- Summary

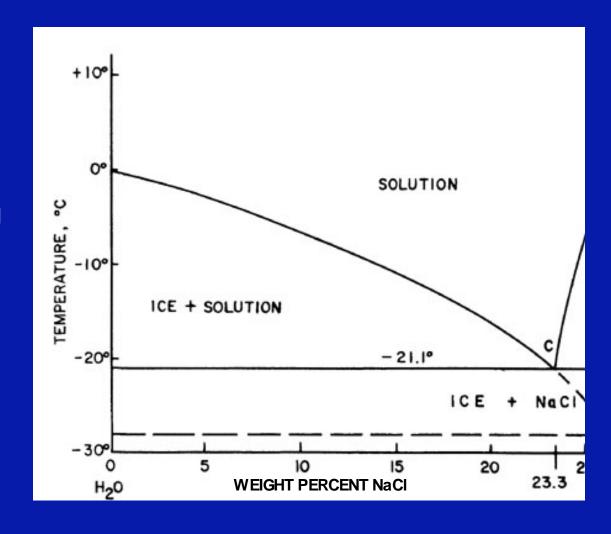
What is temperature?

 A measure of the average translational kinetic energy associated with the disordered microscopic motion of atoms and molecules.

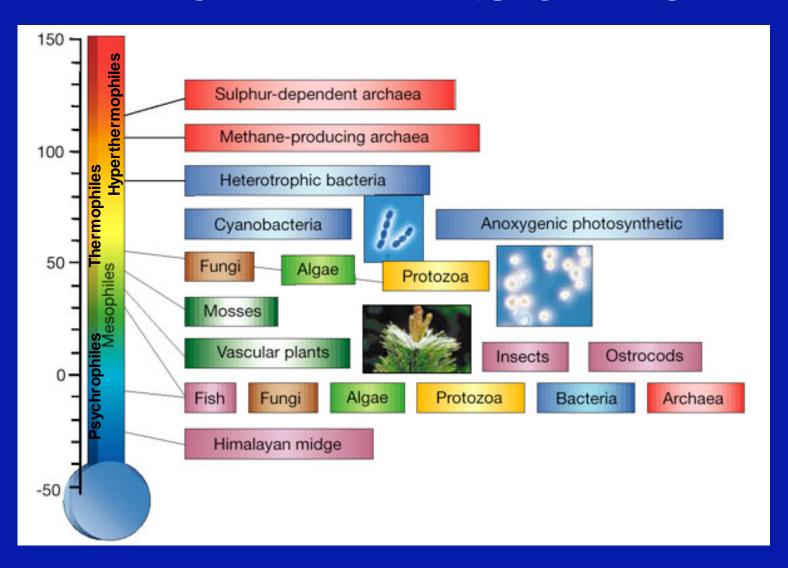
Physical and Chemical Constraints


- High Temperatures: Fast, Fleeting, Flexible
 - Reaction & diffusion rates increase

- Chemical degradation increases
 - Flexibility/fluidity increase
 - Liquid H₂O → Gas
- Low Temperatures: Slow, Stable, Solid
 - Reaction & diffusion rates decrease
 - Flexibility/fluidity of molecules decrease
- ′ Liquid H₂O → Solid

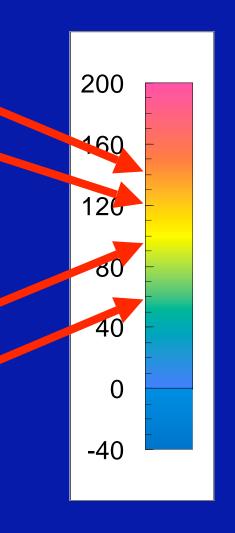

Limits of Liquid H₂O

- Increase boiling point:
 - Increase pressure!
- Decrease freezing point:
 - Add solutes!



Freezing Point Depression

- Seawater, 3% salinity: T_m = -1.7°C
- Saturated NaCl brine: T_m = - 21°C
- Other Brines
 - Don Juan Pond
 - CaCl₂ and NaCl brine
 - $T_m = -52^{\circ}C$
 - Mineral acids
 - $T_m = -90 \, ^{\circ}C$
- As water solidifies, solutes are excluded from the crystal structure


Known T Limits of Life

Rothschild and Mancinelli (2001). "Life in extreme environments." Nature 409: 1092-1101.

High T Limits of Life

- Enzymes active to 142°C
- Reproduction to 121°C
 - strain 121, family *Pyrodictiaceae* (Kashefi and Lovley, 2003)
- Restricted to prokaryotic life!
 - Bacteria max out at ~95°C
 - Eucaryotes max out at ~60°C

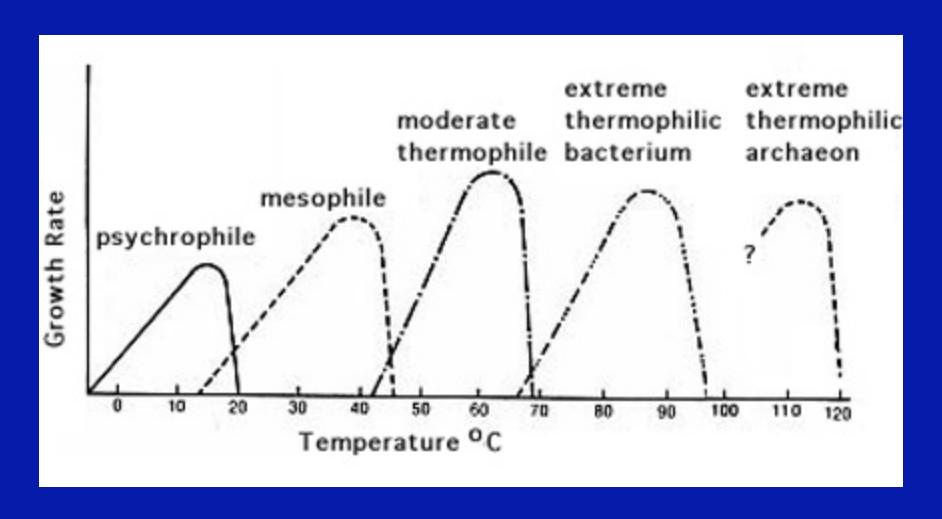
Low T Limits of Life

- Eucaryotes -1.8C (freezing point of seawater)
- Procaryotes
 - -8°C Permafrost, Frozen Food isolates (Gilichinsky, 1995)
 - -10°C "Psychrobacter cryohalolentis K5" (Bakermans, 2003)
 - -12°C "Psychromonas ingrahamii" (Breezee, et al. 2004)
- Metabolic activity to -20°C
 - Eucaryotes
 - Himilayan Midge to -18°C (Kohshima, 1984)
 - Antarctic lichens and endoliths (Friedmann, 1993)
 - Bacteria/Archaea
 - Permafrost and South Pole snow (Rivkina, 2000; Carpenter, 2000)
 - Sea Ice (Junge, 2004)
- Can preserve cells at -196°C (liquid N₂)

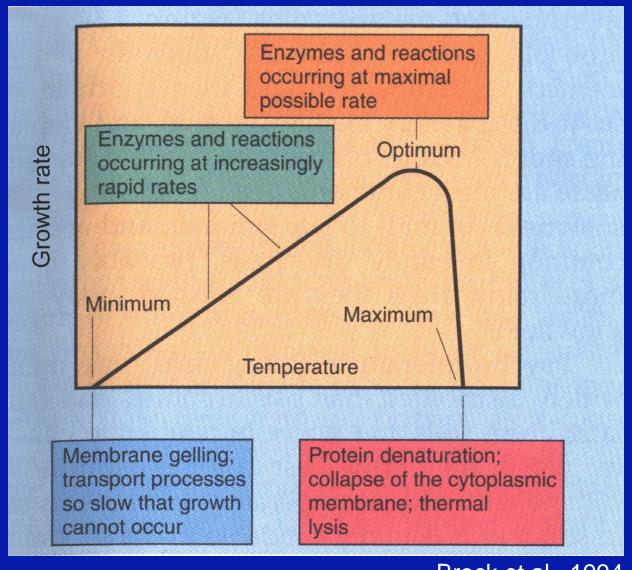
200

160

120


80

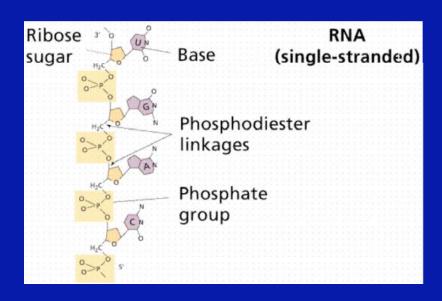
40

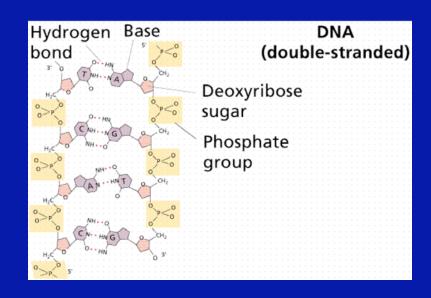

1

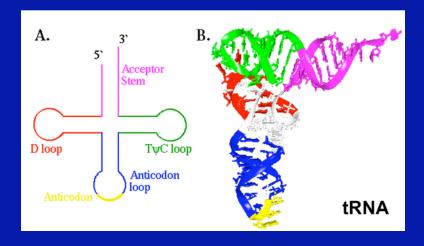
-40

Thermal Classes of Organisms

Temperature Effects on Growth




Brock et al., 1994


	High T	Low T
Nucleic Acids	Denaturation by strand separation Degradation of bases (loss & deamination)	Unfavorable secondary structures Difficult to unwind and access
Proteins	Denature and aggregate — metabolism collapses Deamidation of Asn & Gln Glu & Asp form succinimide His, Met, Cyst, Trp, & Tyr oxidized	Cold denature (driven by hydration of polar and non-polar residues) Slowed reaction rates
Lipids	Too fluid	Too viscous, crystallize Ruptured by ice crystals
OTHER	Metabolites degrade	Energy costs high

Nucleic Acids

- •DNA
- •RNA
 - •Ribosomal
 - Messenger
 - Transfer

Nucleic Acids at High Temperatures

Problems:

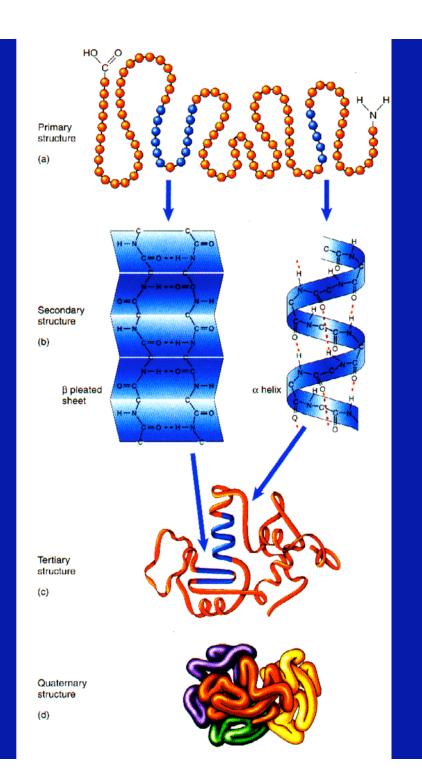
- Strand separation
- Degradation of bases (loss and deamination)

Solutions:

- Increase concentration of salts or polycationic polyamines (also help stabilize proteins)
- Introduce supercoils
- Cationic DNA-binding proteins
- Post-translational modification of tRNA
- DNA repair systems

Nucleic Acids at Low Temperatures

Problems:


- Unfavorable secondary structures
- Difficult to unwind and access

Solutions:

- DNA binding proteins
- RNA helicases to unwind secondary structure
- RNA chaparones
- Post-transcriptional modification of tRNA (increase dihydrouridine)

Proteins

 GOAL: balance molecular stability and structural flexibility in order to maintain activity

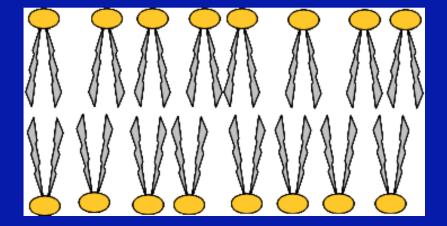
Protein Modifications

	High T (thermophiles)	Low T (psychrophiles)
Uncharged polar residues	\downarrow	↑ (on surface)
Charged residues	↑	↓ (neg. charges ↑ on surface)
Residue hydrophobicity	↑	↓ (but)
Other	β sheets more likely ↓ residue volume	↓ ion pairs & H bonds ↑ gly and ↓ pro
Genome Level	↓ size of proteins ↓ gln ↑ glu (H only)	↑ gln ↑thr ↓leu ??? ↑ hydrophobic res on surface ???

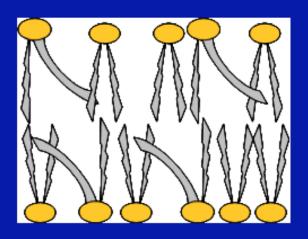
Fields, 2001; Haney, PNAS, 1999; Chakravarty, 2000; Tekaia, 2002; Feller 1997; Saunders, 2003

Protein Stabilization

- Compatible solutes (aka 'extrinsic stabilizers')
 - Advantages:
 - Can occupy broader thermal niches (simply vary concentration of solute)—good for transient changes in T
 - Affects all proteins in cell
 - Examples:
 - Increase with high temperature:
 - 2,3-phosphoglycerate (at high T in methanogens)
 - Myo-inositol phosphate derivatives, diglycerol phoshpate, α -mannosyl glycerate, inorganic ions, stress proteins
 - Increase with low temperature:
 - Stress proteins
 - Glycine betaine, glycerol,trehalose, sucrose, proline, dimethylsuloniopropionate (Welsh, 2000)

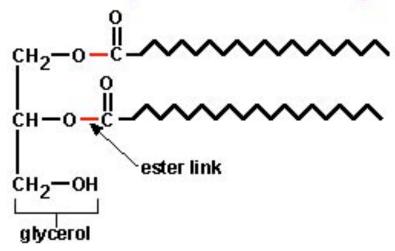

Cell Membranes

- Fluidity is important for metabolic function.
- Fluidity affected by:
 - Temperature
 - Composition

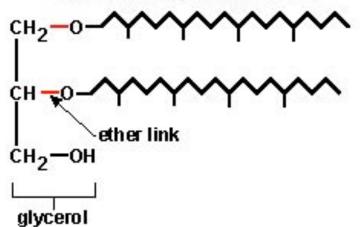


Saturated→Viscous

Unsaturated→Fluid



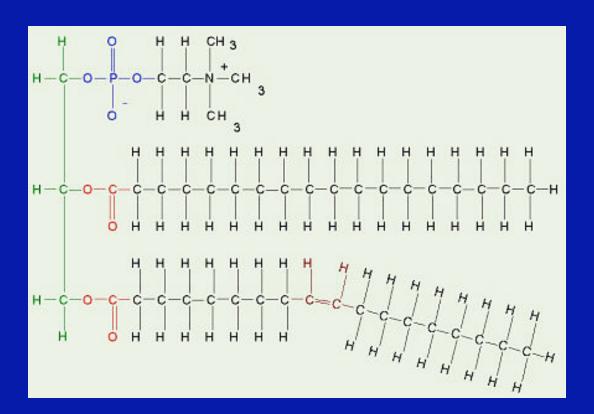
Maintaining Membrane Viscosity at High Temperatures (thermophiles)


- Archaea
 - Ether bonds (vs. ester bonds)
 - Enhance membrane packing to reduce fluidity:
 - Caldarchaeols & nonitolcaldarchaeols
 - Cyclic structures in transmembrane spanning fatty acids

- Bacteria
 - Mimic archaeal ether
 & diether linkages
 with:
 - Tetraesters
 - Fatty alcohols
 - Long-chain aliphatic diols
 - Increase acyl-chain length, saturation, branching and/or cyclization

Membrane Lipids of Bacteria and Eukarya

Membrane Lipids of Archaea



Membrane Lipids of Thermophilic *Archaea*

Figure 3. Archaeal lipid architecture. (a) Diphytanyl glycerol diethers, (b) dibiphytanyl diglycerol tetraethers, (c–f) internal cyclisation in dibiphytanyl diglycerol tetraethers, (g) macrocyclic diphytanyl glycerol diether, (h) internal covalent cross-linking in dibiphytanyl diglycerol tetraether.

Maintaining Membrane Fluidity at Low Temperatures (psychrophiles)

- Reduce membrane packing to enhance fluidity
 - Decrease acyl-chain length, saturation, and/or branching

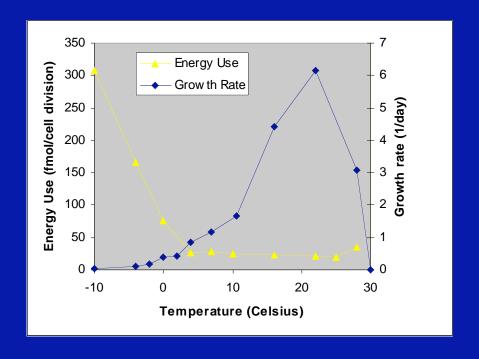
Saturated

Unsaturated

Additional High Temperature Concerns

Metabolites

- Problem: stability
 - Very short half-lives at 95, 105°C
 - FMN, pyridoxal phosphate, glucose-1,6-diphosphate, acetyl phosphate, CoASH, ATP, ADP


Solutions:

- Protective microenvironment—control pH, metal ion concentration, etc.
- Metabolic channeling—between enzymes that are physically next to each other
- Alternate pathway or compound

Additional Low Temperature Concerns

- Ice crystals
 - Live in a salty environment
 - Produce cryoprotectants
 - Antifreeze proteins
 - Glycine betaine, glycerol, ectoine, proline, glutamate, alanine, trehalose (a.k.a. compatible solutes)
- Salt
 - Produce compatible solutes
- Low diffusion rates
 - More transporters in membranes
 - Enzymes with higher affinity

- Energy
 - More required at low T

Summary/Conclusions

- High Temperatures—Fast, Fleeting, Flexible
- Low Temperatures—Slow, Stable, Solid
- Have we identified the actual limits of terrestrial life and biomolecules?
- What factors will define the actual limits?
 - High—chemical degradation?
 - Low—presence of liquid H₂0?