Building a Theoretical Model of a
Quiescent Solar Prominence



What is a Solar Prominence?

* Relatively cool dense plasma suspended
above the sun’s surface in apparent global
equilibrium



What is a Solar Prominence?

* Condensed plasma
two orders of
magnitude cooler
than surrounding
corona

* Timescale of days
to weeks

» 10>g mass can
drain in a day

Image: Berger et al 2011



How is the plasma suspended?

* Bowed magnetic field lines
* “Frozen in” plasma



How Can We Model a Prominence?

Use MHD equations

A full 3-D model for all of the variables
would be too complex

Solution: use a model of a solar
prominence from 1957 Kippenhahn-
Schliiter paper

Turns 3D model into 1D



Kippenhahn and Schliiter Model

* Static p isothermal The Original Isothermal Static K-S Slab

slab

e Still allows for
. Bowed
variance of all Bowed
parameters, non-
trivial interactions

* B=B,[0.1,H(y)]

Density



Using this model...

* Still can’t solve the 1D equations with
all the parameters

* What can we do?
— Build up to the full model gradually

— Learn more about the effects of viscosity,
resistivity, etc on the basic plasma
behavior along the way

— Helps to better understand the behaviors
of the final solution



Radiation Nonlinearin T

 Generalization of linear radiation
calculation in Low et al. 2012

* The Set-Up:
— Field-aligned thermal conductivity
— Infinite electrical conductivity
— Static
— Nonviscous
— Radiative loss, r =0, p°T"
— Simple heating, h=y,p



Radiation Nonlinear in T

Thermal Conduction Radiative

After a lot U af ok ar] Coolime
P s |= (B~ H)T"" = By
of math... 10" dH|1+H® dH

Heating
Balance of heating and radiation

In Low et al. 2012, n=1 and the

differential equation can be analytically
solved.

Radiative loss isn’t necessarily linear in '

What if n=2 or more? r=o,p’T"



Radiation Nonlinearin T

* N=2leadstoa
nonln}ear differential , _ o, p°T?s
equation

) NOt analytlcauy This causes a lot
SOlvable of trouble!

* Use Runge-Kutta

method to solve

<
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100 dH|1+H* dH



Radiation Nonlinearin T

* Does this equation -
behave the same as r=0o,p"1"»
the n=1 case?

. Pretty mUCh This causes a lot

of trouble!

* Higenvalue problem in

heating coefficient vy
4

}(ﬁ—Hz)T“—ﬁV

L d | K ar’?
100 dH|1+H* dH



Radiation Nonlinear in T

* Try to match the
boundary

conditions

 If Y>Ycritical ’ heating
everywhere, no
equilibrium

* I Y<Yerigca - CONLET

collapses to cold
dense sheet.



Radiation Nonlinear in T

Y:Ycritical
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Image: Low et al. 2012



Radiation Nonlinear in T

 Conclusions:
— Agreement with results from linear case

— For most parameters, this system produces a
cold, collapsed core, consisting of an infinite
current sheet

— This most-likely breaks the frozen-in
condition, allowing the material to flow
resistively across the magnetic field



Radiation Nonlinearin T



Isothermal Viscous Case

We need more physics to
explain Part I

Look at resistive flow with
Viscosity

[sothermal to remove energy
balance

Resistivity and viscosity
taken to be constant

Image: indianews99.com



Isothermal Viscous Case

* New force balance equation:

dzv_ +d—H—O
ar: P8y T

Magnetic tension

Ho

Viscous Force Gravity

* Direction of force is
determined by curvature of
velocity distribution



Isothermal Viscous Case

* Solve force-
balance for
| velocity | and
density

* Viscosity lessens
effective gravity
In center,
increases it at
ends



Isothermal Viscous Case

 Conclusions:

— Force at large Y

Viscous Case compacts the slab
into a finite width

— Viscous slab is
Original Static K-S Soln suspended in
vacuum by
external potential

field



Conclusions

* Perfect balance of heating and radiative
loss is rare and unstable

 Future Work:

— Resistive and viscous heating (steady-state),
everything together

— Understand how all of the different forces and
processes work together to produce the
behavior seen in prominences.

Thermal conduction Resistive heating

Simple heating

Radiative loss Viscous heating



Conclusions
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