Characteristics of Auroral Precipitation Based on DMSP Observations

Nancy Holden August 1st, 2012

Mentors: Barbara Emery Astrid Maute Wen-Bin Wang

Sun-Earth System

Sun-Earth System

Magnetic Latitude (MLAT): Radial coordinate

 Geomagnetic and geographic pole don't align

Magnetic Local Time (MLT): Angular Coordinate

Sun-Earth System

$E \times B$ gives direction of ion drift velocity (v_i)

Characteristics of the Aurora

- Ion Convection: Magnetospheric convection that carries plasma and magnetic field lines from the dayside magnetopause into the magnetotail and back again
- Ion Convection:
 Ions of O, N₂, O₂, etc

Characteristics of the Aurora

- Auroral Particle Precipitation: e- and p+
- Electron Energy Flux: Corresponds to how much electron energy comes into the atmosphere
 - Penetrates into atmosphere → increases ion and electron density
 - More collisions between ions and neutrals
 - Increases frictional heating (Joule Heating)

Codes and Instruments Used

- DMSP (Defense Meteorological Satellite Program) F13 Satellite
 - SSJ4 Particle Detector
 - IDM (Ion Driftmeter)
- Matlab & Fortran

Codes and Instruments Used

Day of a Storm

Calm Day

Data Analysis: -Bz Conditions

OMNI Data

- 5 minute data
- Compensate for travel time between OMNI measurement and ionosphere by averaging data between 5-20 minutes before time considered

- Peaks in electron energy flux with corresponding equatorward and poleward fall offs
- Mean Energy
- Conductivities

Single DMSP pass

Gaussian Curves

Disregarded Data

Comparing with Bz Conditions

Bz Negative

Bz Positive

Comparing Bz Conditions

Differences in Ionospheric Convection Pattern

Comparing with Bz Conditions

- As Bz becomes more negative, the mean energy flux increases
- Peaks in energy flux appear shifted towards midnight

Peak and MLAT Delta h Relationship

Large peaks in electron energy flux correspond to small delta h values

Next Step

Integrating results with Ion Driftmeter data

- To compare relative peak positions of electron energy flux with those of ion drift
- Alignment of relative peak positions of ion drift and energy flux will give regions of optimum energy input

Eventually...

- Joule Heating
- Find E field
 - Electron drift velocity proportional to $\vec{E} \times \vec{B}$
 - Use IGRF model
- Calculate Joule Heating

• $q_j = j E = \Sigma_P * E^2$

Conclusions

- Small MLAT delta h values tend to correspond to large electron energy peaks and large MLAT delta h values tend to correspond to small peaks. This suggests sharp fall-offs for large peak values and a slower, more gradual fall-off for smaller peaks in electron flux.
- Trends show the average electron energy flux often peaks at pre-midnight
- Mean electron energy flux for –Bz conditions tend to be larger than for +Bz conditions
- Further study using more data and considering various geophysical conditions must be considered in order to verify these results and eventually calculate Joule heating

References

G. R. Wilson, W. J. Burke, D. Knipp, and K. A. Drake, Using DMSP data to quantify the energy input to the upper atmosphere.

Hardy, D. A., W. McNeil, M. S. Gussenhoven, D. Brautigam, 1991. A statistical model of auroral ion precipitation, 2. Functional representation of the average patterns. *J. Geophys. Res.*, **96**, 5539–5547.

Rich, Frederick J., Gussenhoven, M. S., Greenspan, Marian E., 1987. Using simultaneous particle and field observations on a low altitude satellite to estimate Joule heat energy flow into the high latitude ionosphere. *Ann. Geophys.*, **5**, 527-534.

Robinson, R. M., R. R. Vondrak, K. Miller, T. Dabbs, D. Hardy, 1987. On calculating ionospheric conductances from the flux and energy of precipitating electrons. *J. Geophys. Res.*, **92**, 2565–2569.

Questions?

