

Modeling Kinematic Dynamos in 2 and 3-D

Ryan Horton, Nicholas Featherstone, Mark Miesch

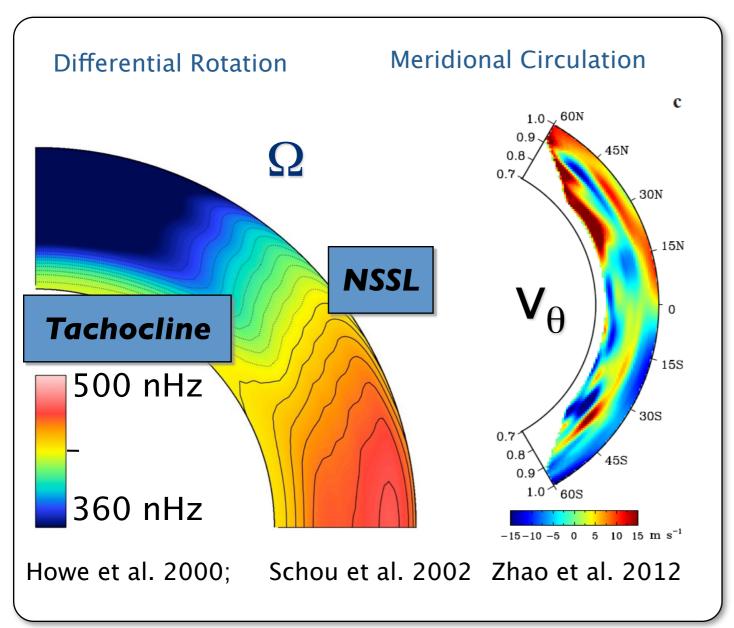
Motivation

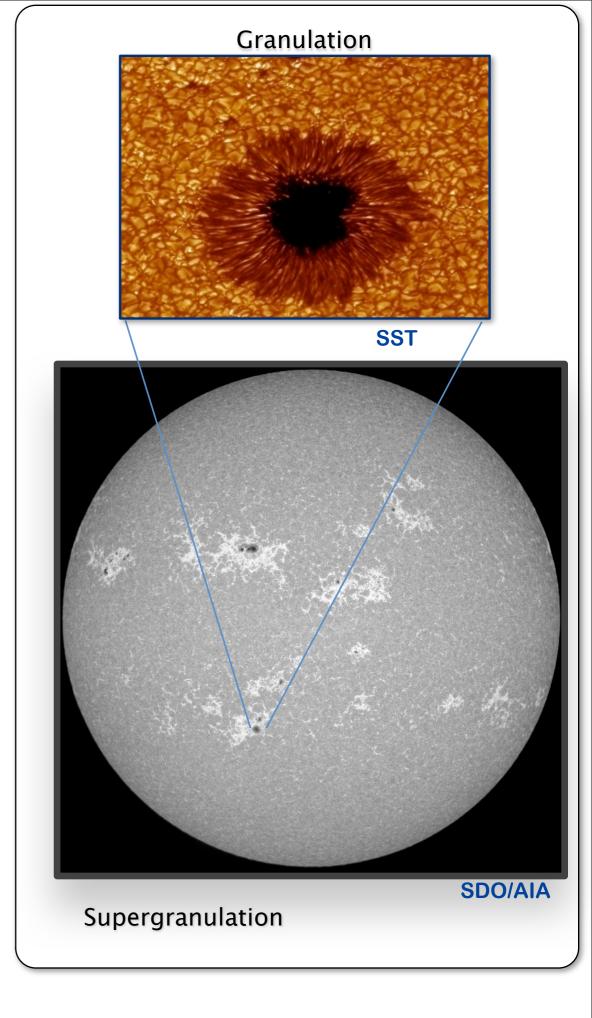
- Convection on many different scales
- Magnetic events on different scales

- Long (~22 year) solar cycle
- How do all these different scales fit together?
- How can we know how accurately our models are working?

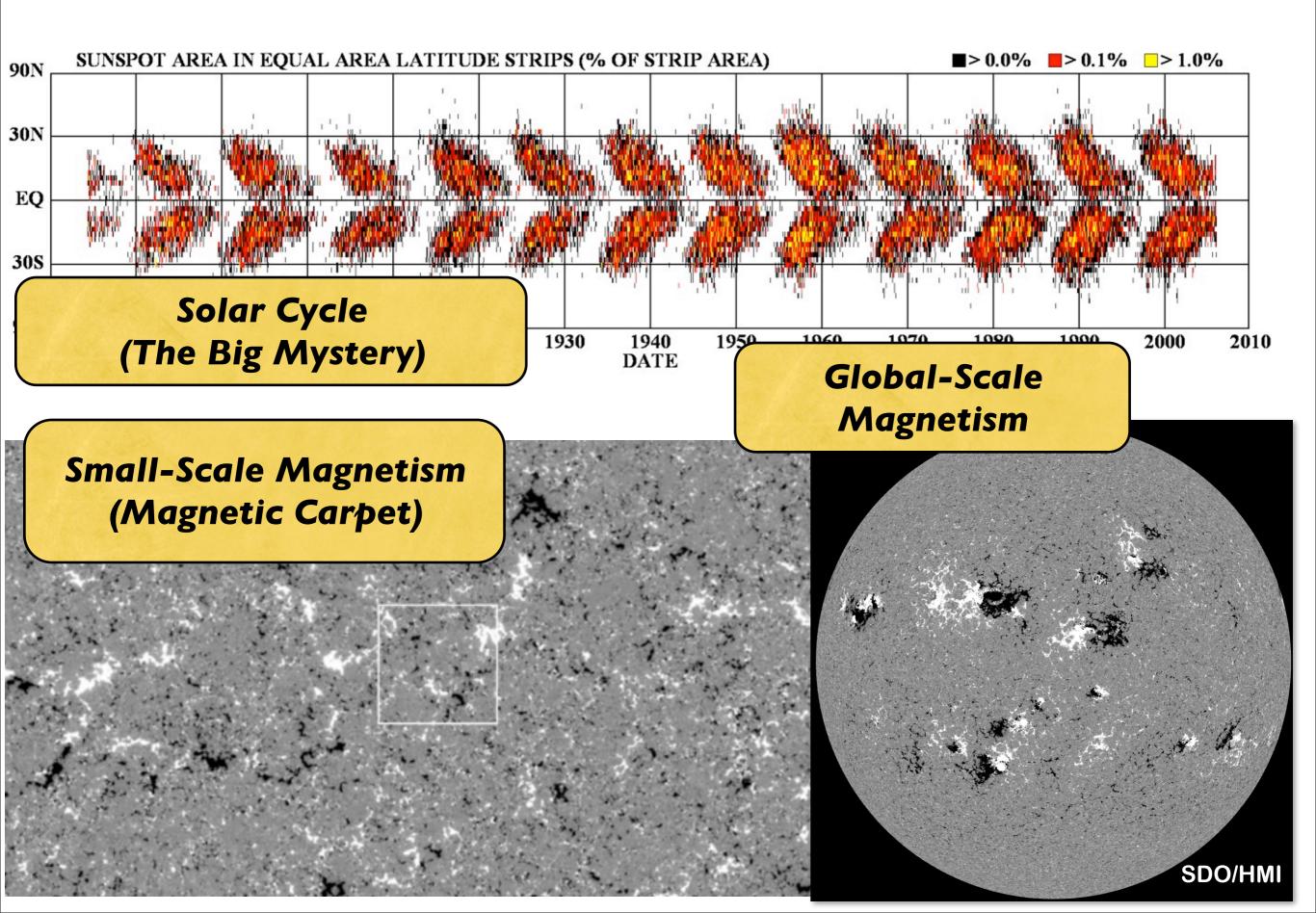
<u>The Dynamic Sun</u> <u>Convection on Many Scales</u>

Helioseismic Inference

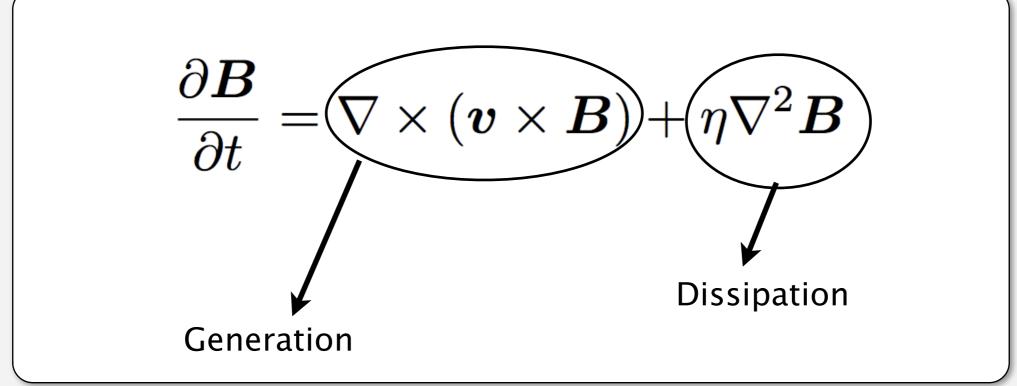


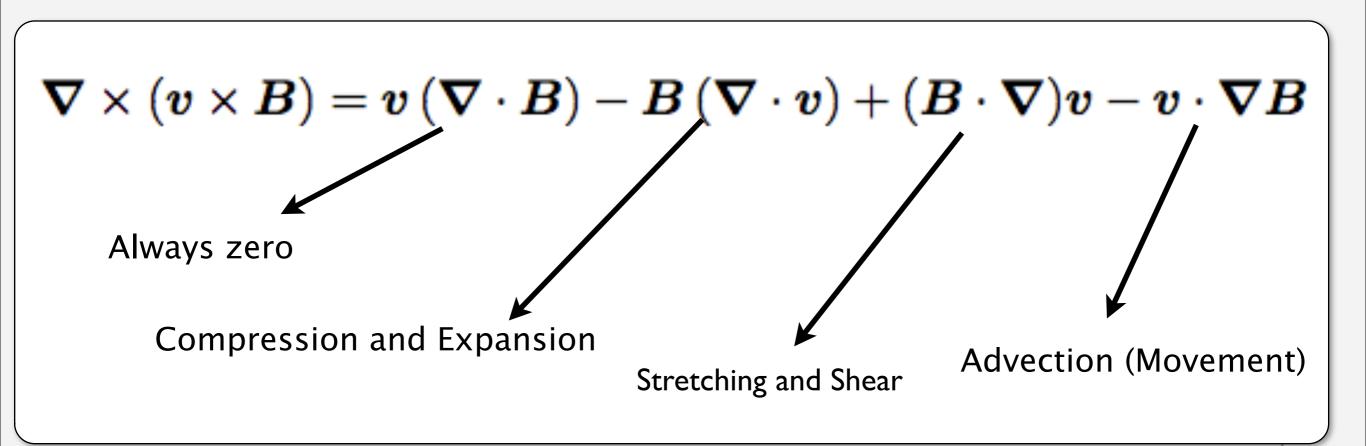


The Magnetic Sun

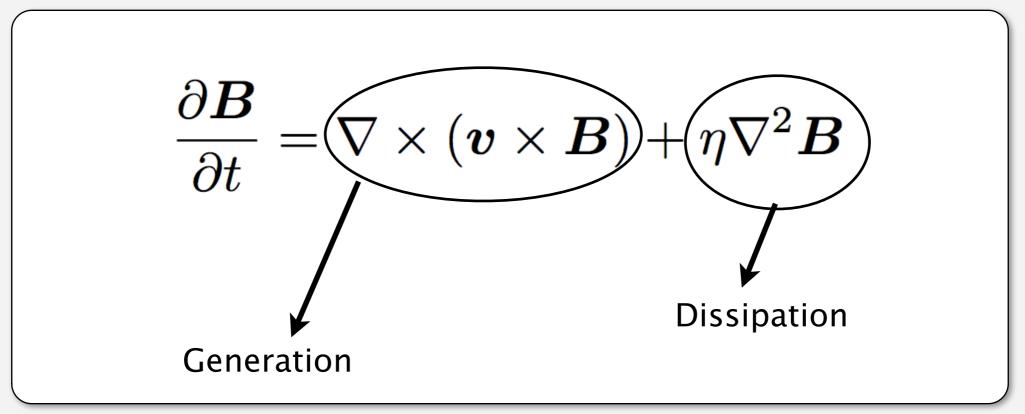


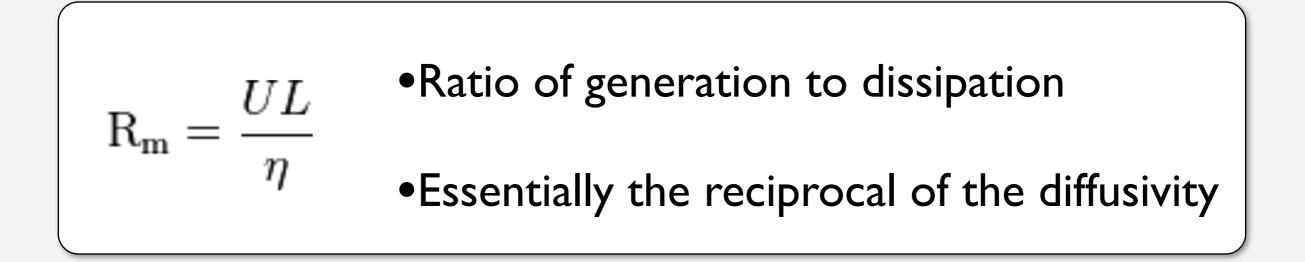
The Induction Equation





Magnetic Reynolds Number

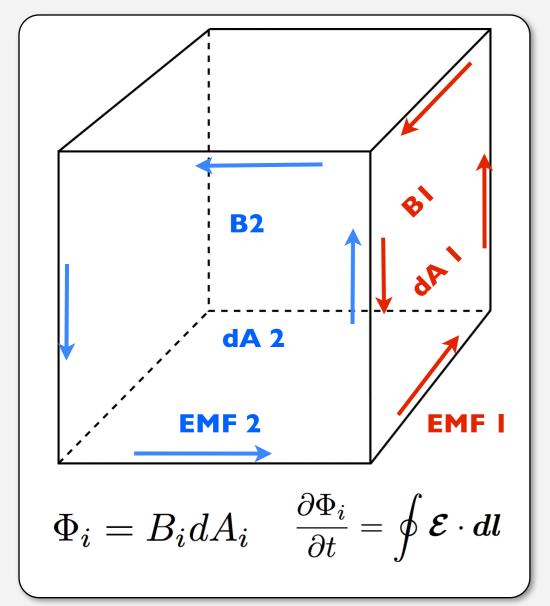




Methods

Magneato

Numerical solution to induction equation
Periodic 3-D domain



•Computational domain broken up into many small cubes

•Constrained transport (Evans & Hawley 1988)

•Preserves divergence free magnetic field by integrating EMF around cell faces

Objectives

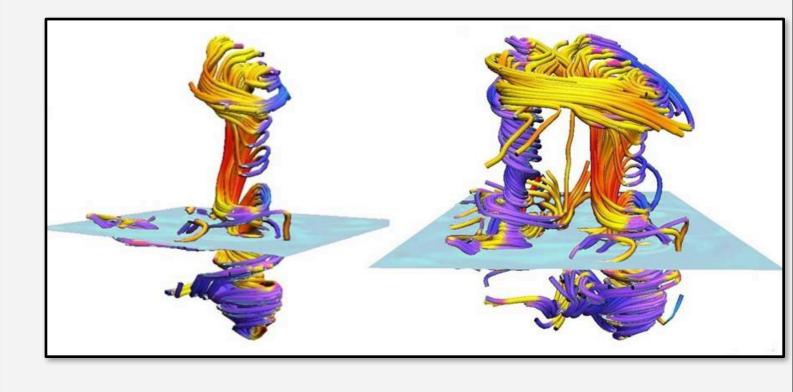
Assessing Dynamo Properties of Numerical Diffusion

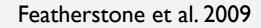
There is always diffusion present

1.2 1.0 .8 .6 . 2 0 240 260 300 340 Ž20 280 320

Examine the dynamo properties of "solar-like" convective flows

Some examples of flows in current solar models

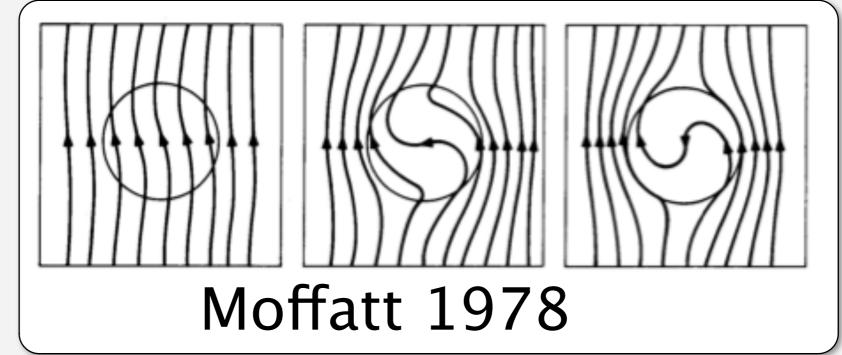




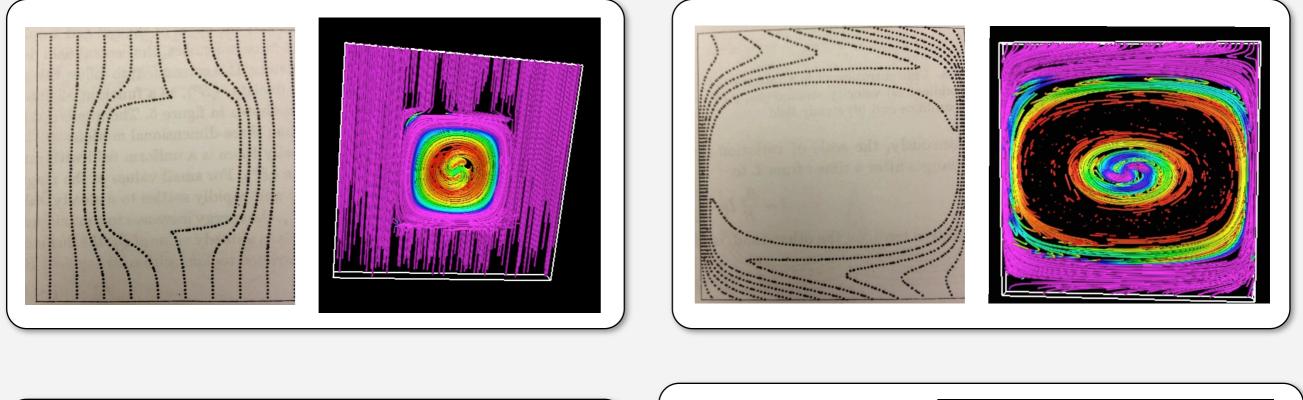
Evans and Hawley 1988

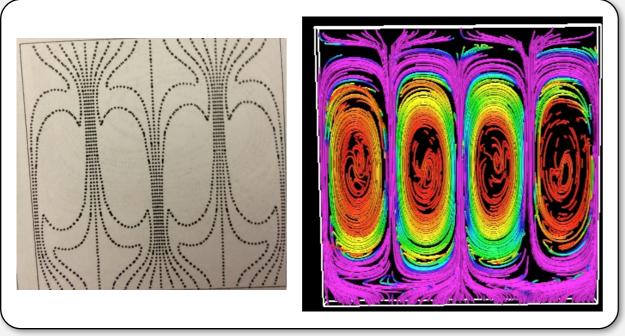
Effects of Vortical Flows in 2-D

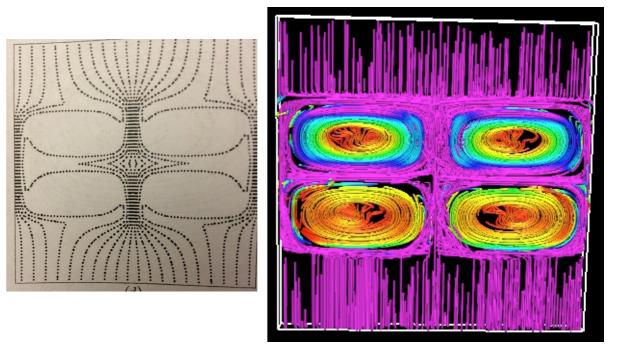
- Flow "winds up" the field
- Takes field in one direction and generates field in another direction
- Eventually dissipation always wins as fields in opposing directions come together



Code Validation

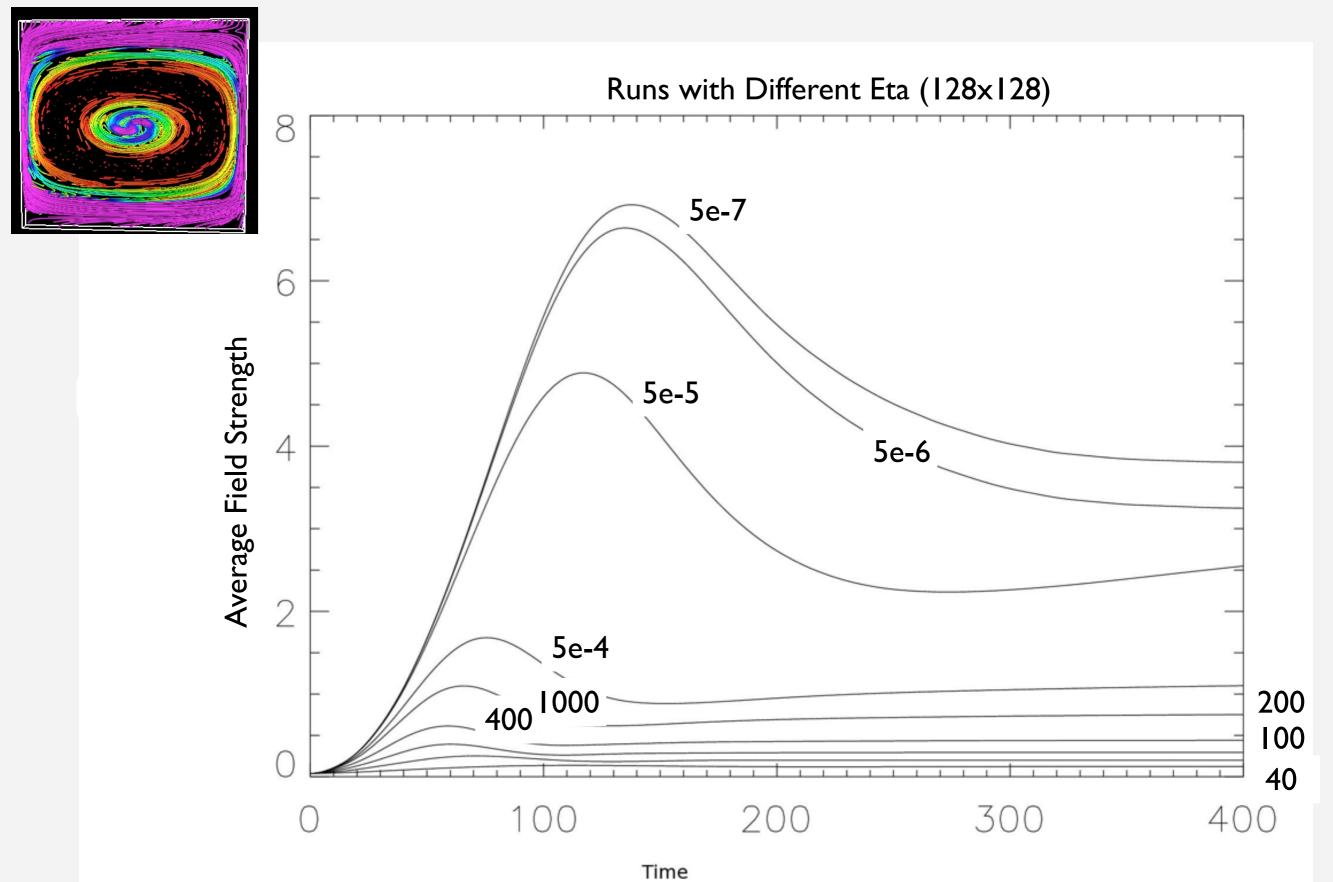






The Expulsion of Magnetic Fields by Eddies, Weiss 1966

Assessing Numerical Diffusion



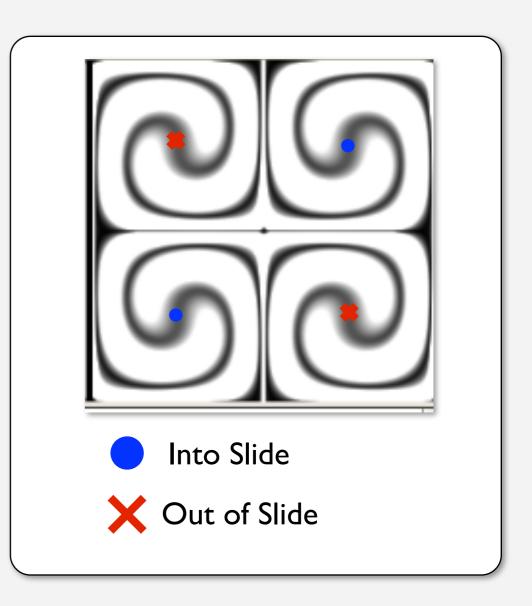
Magnetic Reynolds Number vs Peak of Magnetic Field for Different **Grid Spacings** 10.0 128x128 ~Rm^(1/3) Peak of Average Magnetic Energy 64x64 32x32 1.0 0.1 10² 104 10³ 10⁵ 10⁶ 10¹ 107

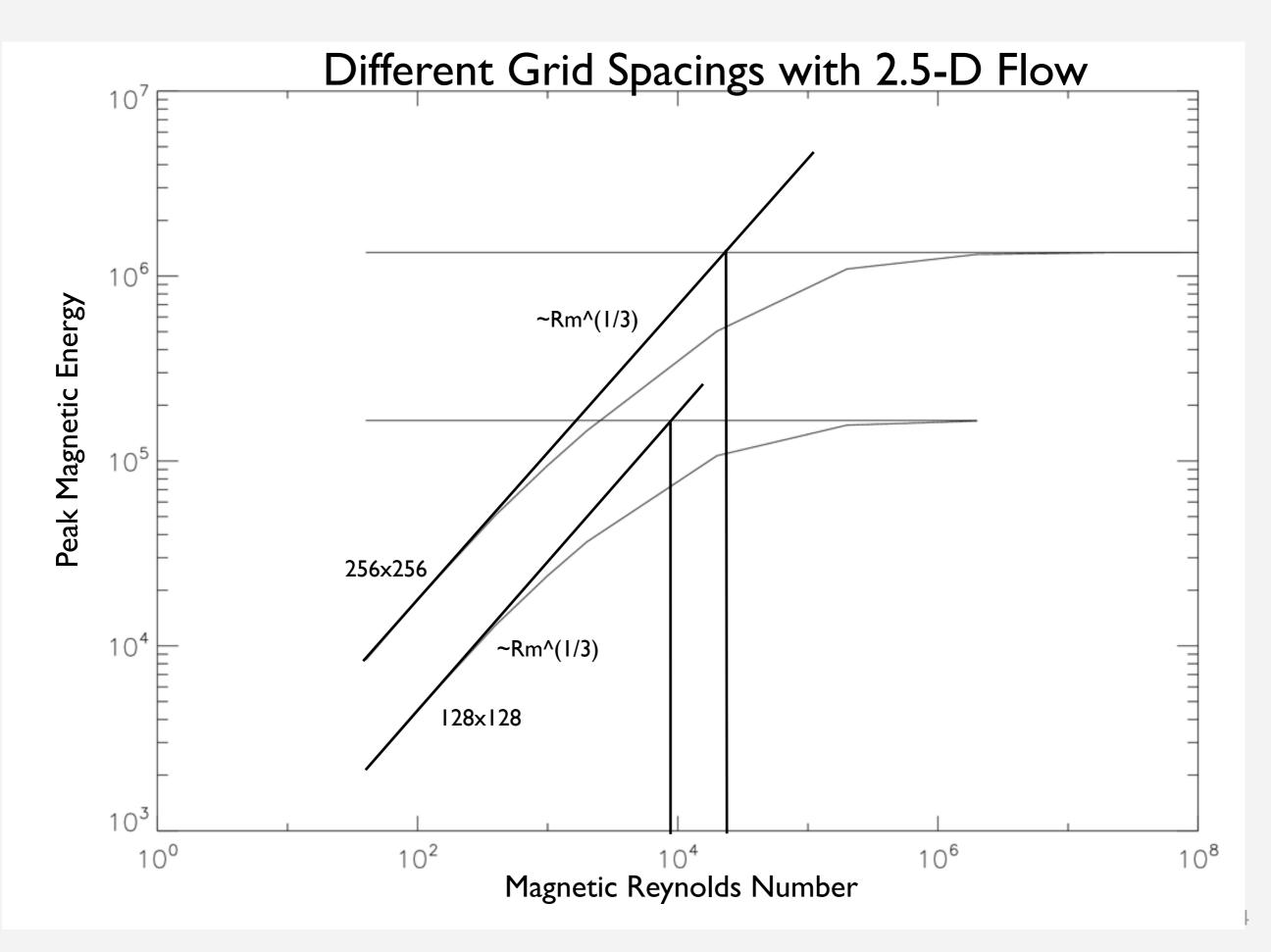
Magnetic Reynolds Number

"2.5-D" Flow

$$\begin{aligned} v_x^a &= A \sin\left(\frac{2\pi x}{L_x}\right) \cos\left(\frac{2\pi y}{L_y}\right) \\ v_y^a &= -A \cos\left(\frac{2\pi x}{L_x}\right) \sin\left(\frac{2\pi y}{L_y}\right) \\ v_z^a &= \sin\left(\frac{2\pi x}{L_x}\right) \sin\left(\frac{2\pi y}{L_y}\right), \end{aligned}$$

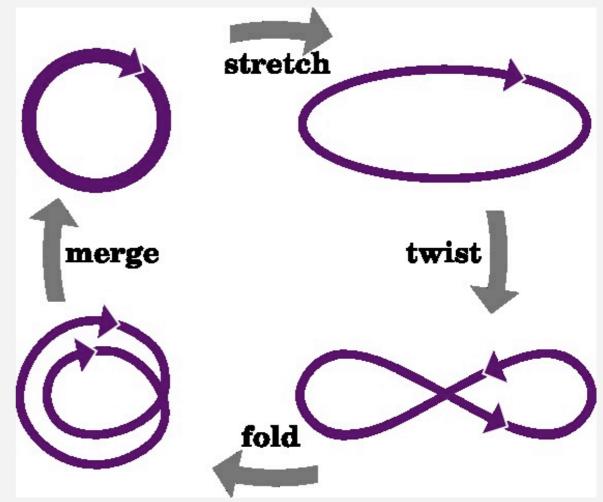
Invariant in z-directionVortices do not connect



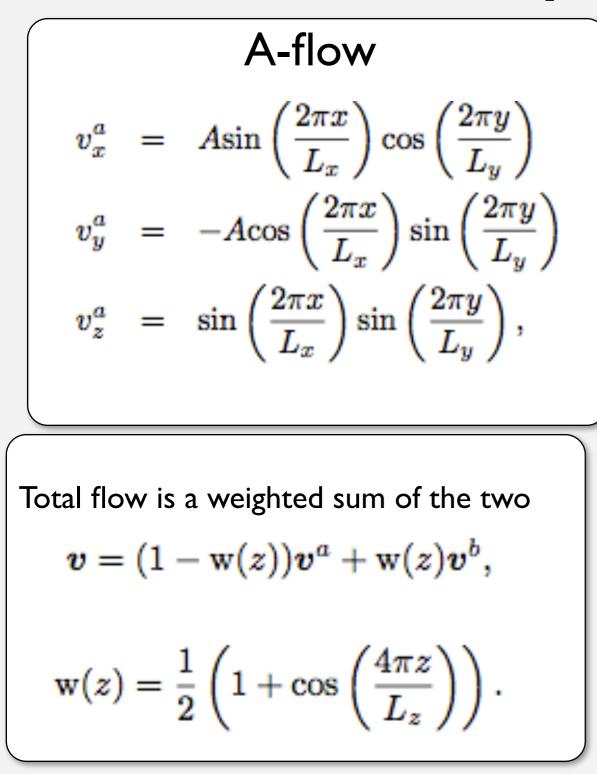


Creating a Dynamo

- Impossible in 2-D (diffusion always wins)
- Field lines will wrap
- Opposing field comes together and cancels
- Possible in 3-D
- "stretch, twist, fold"



Fully 3-D Flow



$$B-flow$$

$$v_{x}^{b} = \cos\left(\frac{2\pi x}{L_{x}}\right)\sin\left(\frac{2\pi y}{L_{y}}\right)\cos\left(\frac{2\pi z}{L_{z}}\right)$$

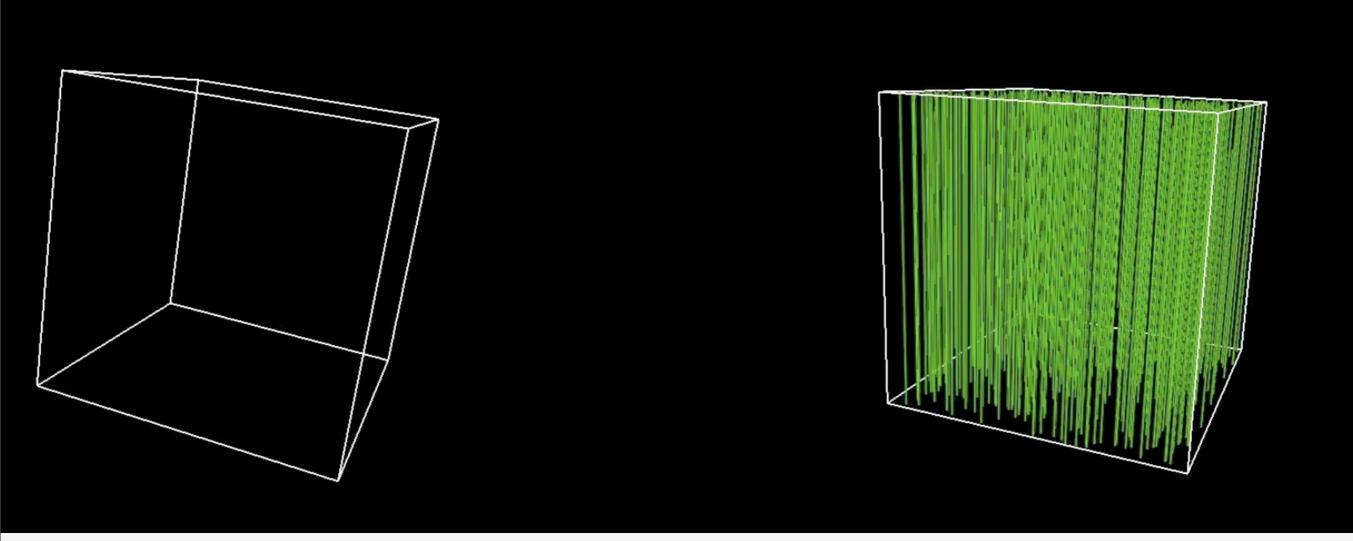
$$v_{y}^{b} = 0$$

$$v_{z}^{b} = \sin\left(\frac{2\pi x}{L_{x}}\right)\sin\left(\frac{2\pi y}{L_{y}}\right)\sin\left(\frac{2\pi z}{L_{z}}\right).$$

128 Cubed 3-D Flow

Magnetic Energy

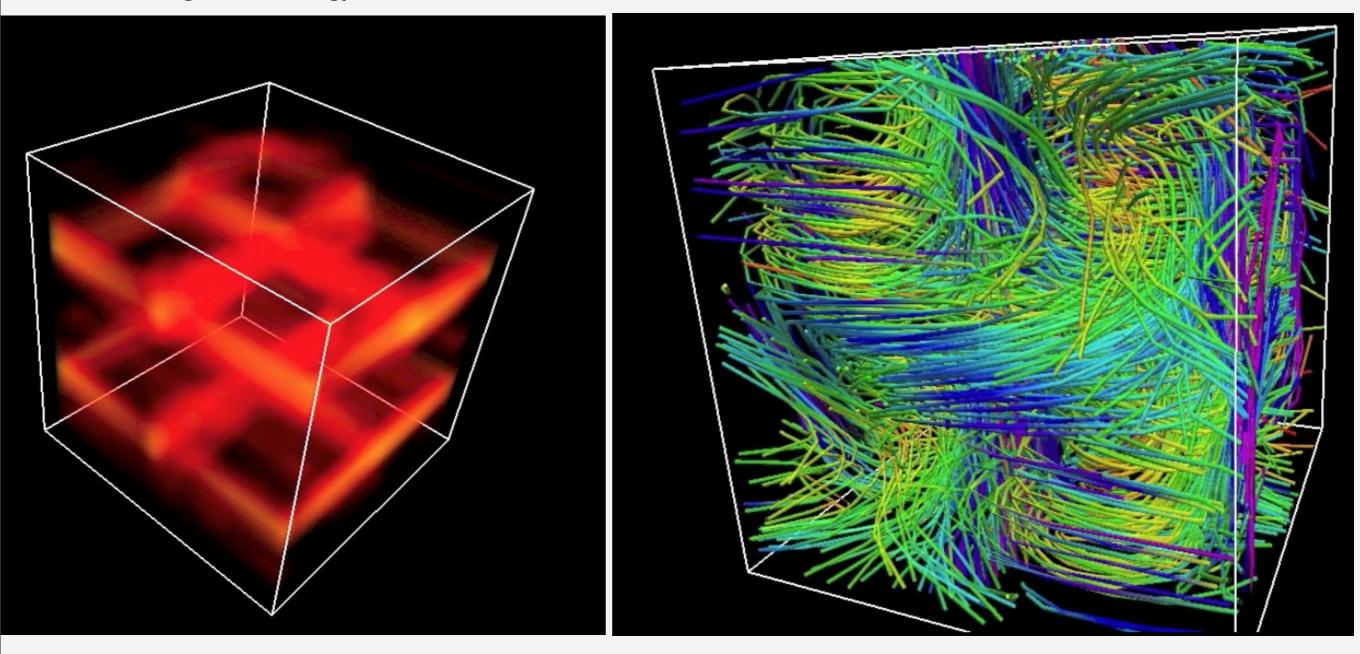
Field Lines



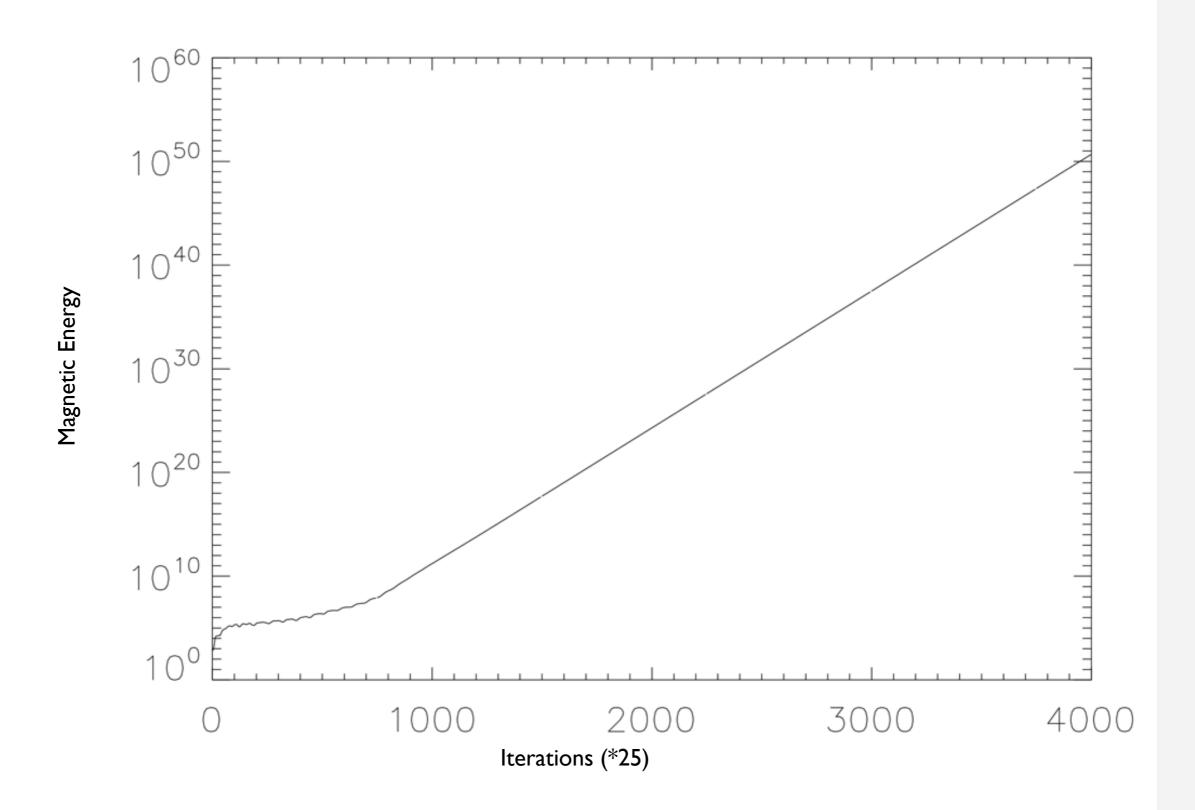
After Many Iterations...

Magnetic Energy

Field Lines



Fully 3–D Dynamo



- Characterized numerical diffusion in two and three dimensional flows
- Showed that the numerical diffusion depended on grid size
- Showed the numerical diffusion varied with flow
- Creation of a 3-D dynamo motivated by those flows present in solar models