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I. Introduction

Preliminary knowledse
. -

* Interplanetary Magnetic Field (IMF) is the
Sun’s magnetic field carried by solar wind in
interplanetary space. TN

* IMF is a 3D vector : [Bx, By, Bz] “"//C\\\.///\\“‘

Bx & By are parallel to the ecliptic- \\/// \-\\F—*

nnnnnn

whereas Bz is perpendicular. / .

* When Bz is negative, IME points south and is
anti-parallel to the geomagnetic field. This
creates a door for energetic particles to enter
Earth’s inner magnetosphere.
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I. Introduction

Preliminary knowledse

 The DMSP F13 satellite was launched in
March 1995 into a Sun synchronous, polar
orbit in the 6-18 local time frame. l

e We use DMSP data from two of its
Instruments:
(1) Special Sensor Precipitating Electron and
lon Spectrometer (SSJ/4)
(2) lon Drift Meter (IDM).
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I. Introduction

Preliminary knowledse
~

* |on drift velocity (Vi) = (ExB)/B?% where E is
Electric Field and B is Earth’s magnetic field.

* Vyis the horizontal cross-track ion velocity.
* Convection Reversal Boundary (CRB) is

) 0 midnight
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I. Introduction

Preliminary knowledse

 Weimer 2005 is an empirical model of the high-
latitude ion drift velocity. We compare Weimer
2005 Vy with IDM Vy observations. '

I
&

 TIEGCM (Thermosphere lonosphere
Electrodynamics General Circulation Model) is a
numeric simulation model for Earth’s upper
atmosphere. TIEGCM uses Weimer 2005 model.

* Hemispheric power (HP) is the spatially
integrated energy flux of precipitating electrons.
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I. Introduction

Definition of Jouleheating

* Joule heating (QJ) is the heat loss due to
passage of electric current through a
conductor. ’
* [n the ionosphere, it occurs due to the |
friction of ions moving through neutral
atoms.

NNV

When the electrons move through the
The speed of the cars s reduced resistor {when current flows to the
on a bumpy road. resistor), heat is generated, resulting
in an energy loss.
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I. Introduction

Importance of Jouleddeating

1. Joule heating is usually the largest

neat source in high-latitude regions.

During geomagnetic storms, Joule l
neating can also exceed the global solar
neating from UV and EUV radiation

Knipp et al., Solar Physies, 2004 ].

2. Joule heating is the largest source of
uncertainty in the energetics of the
thermosphere.
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I1. Research Strategy

Motivation e

* Figure 8 from Heelis
et al. [JGR,1980] is
an estimate of the
relative locations of
the aurora and the
ion drift .

* We aim is to improve
the parameterization
of the aurora in the
TIEGCM so that the
resulting Joule

heating is 4 |
= Boundary Plasma Sheet F|gure 8
approximately correct. s Cont s She

CPS
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I1. Research Strategy

Framework for calculations®&analysis
' I Wl

-

* Total Joule heating
~ Pedersen Conductance X Electric Field*

* Particle Joule heating I
~ Auroral Pedersen Conductance X Electric Field?

* Total Joule heating
= \/Particle Joule heating? + EUV and UV Joule heatng >
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II. Research Strategy

Framework for calculations®&analysis
' e

* Need to analyze the components of Joule heating.

Electron Energy-
measured by

s

C

Pedersen
onductance

[ Joule Heating

Electric Field?

[H]} High Altitude O}

bservaroryam INle

Auroral Pedersen

SSJ4

Conductance Electron Energy

Flux-measured
by SSJ4

EUV and UV

Pedersen
Conductance

Vy (we can safely ignore Vx because
DMSP F-13 is in a dwn dusk orbit)-
measured by IDM

N\
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I1. Research Strategy

o ibm—

1. Analyze the local time variation in Joule
heating, i.e. compare Joule heating during
dawn, dusk, midnight and noon.

2. Study the spatial distribution of Joule heating '

In particular, compare Joule heating in the
polar cap (anti-sunward ion flow) with
equatorward Joule heating (sunward ion flow).

3. Analyze the relative location of electron energy
flux with respect to Vy.

4. Quantitatively compare hemispheric power,
particle Joule heating, and total Joule heating
for different IMF values,.
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I1I. Programming methodology & results

Single day ana151s One@urbit
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I1I. Programming methodology & results

Single day ana151s One@urbit
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I1I. Programming methodology & results

Single day analysis: Formatfessll Orbits

05 01 18 DMSP-F13 smoothed Total Joule Heating (mW/m<)
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I1I. Programming methodology & results

Single day analysis: AlEOshits

2005 01 18 DMSP-F13 smoothed IDM Vy (km/s)
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I11. Programming methodology & results

Single day analysis; AlEQsbits

2005 01 18 DMSP-F13 smoothed $SJ4 eflux (mW/m?) -F13 smoothed 4 Pedersen conductance
12 L

S \:_::‘:‘:Q#.- S
- ' o
- g g y
.

.........

' ﬂklll-ﬂlunumuu-llla ﬁ'

||MHI|llllllmllIlIIm|I||||||||I|1|H|||||ll|III

b i
||!;',}1J?J‘1qu||]|||1r”|}i .ulllll

il 1"7' l )

....
LSS || L O L P A | | e

,,,,,

.......

Equatorward Boundary  Half Integral Energy Flux Poleward BoundanjEquatorward Boundary Half Integral Enerqgy Flux

T T T T
1 | 1 1

0.000 6.000 12.000 15.000 24.000 30.000 0.000 5.000 10.000 15.000 20.000 25.000

Particle Joule heating and Hemispheric Power are calculated for the region
between the Poleward and Equatorward boundary.
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I11. Programming methodology & results

Single day analysis; AlEQsbits

05 01 18 DMSP-F13 smoothed Particle Joule Heating (mW/m?)5 01 18 DMSP-F13 smoothed Total Joule Heating (mW/m
12 12
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Region inside CRB circle has poleward Joule heating due to anti-sunward ion
flow, whereas the region between Vy zero Equatorward Boundary and CRB
has equatorward Joule heating due to sunward ion flow .
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I1I. Programming methodology & results

Multiple day results: Jan=jiime 2005

-4<Bz<-3 Electron Energy Flux -4<Bz<-3 DMSP F13 & Weimer 2005 Cross Track lon drift
12

Poleward Boundary X Veimer Vy Peak Weimer
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I1I. Programming methodology & results

Multiple day results: Jan=jiime 2005

-4<Bz<-3 DMSP F13 Particle Joule Heating -4<Bz<-3 Total Joule heating
12

0
Poleward Boundary| yy Zero Equatorward Boundary

Area for particle Joule heating is bigger on Area for Total Joule heating is bigger on the
the dawn side compared to the dusk side. dusk side compared to the dawn side.
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I1I. Programming methodology & results

Multiple day results: Jan=jime 2005

DMSP F13 and Weimer 2005: Jan 01 to June 12 2005 Dlﬂierence between
radii of CRB and
Vy Zero Equatorward
Vy Peak Weimeré Vy Peak sunward i
: INncreases

as Bz decreases. This
means area for
equatorward Joule
heating increases as
Bz becomes more
negative. Also, as Bz
becomes more
negative , CRB radius
increases and so does
the area for poleward
Joule heating .
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I1I. Programming methodology & results

Multiple day results: Jan=jime 2005

DMSP F13: Jan 01 to June 12 2005
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Difference between
the radii of
Equatorward and

Boundaries increases
with the absolute
value of Bz.
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IV. Key Findings: Dawn Vs. Dusk

Electron Energy Flux and Qwhenc Power

Electron energy flux: Bz = -1.5, HP=16.7GW

Area for Hemispheric Power is mostly bigger on
the dawn side compared to the dusk side.
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IV. Key Findings: Dawn Vs. Dusk

Hemispheric powesss

Jan-Jun 2005 DMSP-F13 IDM+SSJ4
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IV. Key Findings: Dawn Vs. Dusk

Average Particle & Total Jomledheating

Particle Joule Heating (North & South )
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Average particle Joule heating on dawn
side is almost equal to average particle
Joule heating on dusk side.
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Average Joule heating for dawn side is
greater than that for dusk side when
Bz>0, and vice versa for Bz<o.
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IV. Key Findings: Dawn Vs. Dusk

Area for Particle & Total Jottlesheating

Particle Joule Heat: Bz = -1.5, QJP=15.1GW Total Joule Heat: Bz = -1.5, QJ=40.2GW
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[V. Key Findings: Dawn Vs. Dusk

Area Integrated Particle & TotalJeule heating

Jan-Jun 2005 DMSP-F13 IDM+SSJ4
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Integrated particle Joule heating is higher
on the dawn side than on the dusk.
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Integrated QJ on the dawn side is almost
equal to QJ on the dusk side.
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IV. Key Findings: Equatorward Vs. Poleward

Average Particle & Total Jomledheating
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Average equatorward particle Joule
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average equatorward Joule heating .
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IV. Key Findings: Equatorward Vs. Poleward

Area Integrated Particle & TotalJeule heating

80

Jan-Jun 2005 DMSP-F13 IDM+SSJ4

o QJT polar cap
¥ QJT eq sunward Vy

+ QJP polarward edge

Median Bz (nT)
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Integrated QJ in the
polar cap is more than
integrated
equatorward QJ for
sunward Vy.
Integrated equatorward
QJP for sunward Vy is
more than integrated
poleward Q]JP.

On the equatorward
side, QJP is mostly
equal to QJ, indicating
the importance of the
auroral Pedersen
conductance.
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IV. Key Findings: Hemispheric Power Vs. Joule Heating

Integrated Joule heating Vs, Hemispheric Power

Jan-Jun 2005 DMSP-F13 IDM+SSJ4
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. heating is much
higher than
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almost the same
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Conclusiontas

PARTICLE JOULE HEATING (QJP)

TOTAL JOULE HEATING (QJ)

Average QJP:
Mostly, Dawn side~ Dusk side.

Integrated QJP:
Dawn side>Dusk side since dawn
area is larger than dusk area

Average QJ:

when Bz>0, Dawn side>Dusk side
when Bz<0, Dawn side<Dusk side
Integrated QJ:

Dawn side = Dusk side although dusk
area is mostly greater than dawn area

Average QJP:
Equatorward>Poleward.

Integrated QJP:
Equatorward>Poleward.
QJP=HP

Average QJ:

Poleward (anti-sunward Vy)>Equatorward
(sunward Vy)

Integrated QJ: QJ>>HP
Poleward>Equatorward.

On the equatorward side, QJP= QJ.

Area for QJP and HP increases as
the absolute value of Bz increases.

Area for QJ ,especially equatorward QJ ,
increases as Bz becomes more negative
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Thank you for your attention!

Questions?




