Mesospheric Temperature Observation Using a Michelson Interferometer

Hannah LeTourneau (Whitworth University) Mentor: Dr. Qian Wu (HAO)

Overview

Project Details
Background Information
Data Collection Method
Data Analysis Software
Results
Future Study

Project Overview

Michelson interferometer set up
Software written
Data collected
Aboard ship from CA to Antarctica in November
Design work

The Mesosphere/Lower Thermosphere (MLT)

80-105 km above Earth
Very dynamic
Tides
Airglow Spectral Analysis

Hydroxyl (OH)

Image Credit: D. J. Baker and A. T. Stair, Jr., Physica Scripta, 37,611 (1988).

Image Credit: Application of a Michelson Interferometer to Measurements of OH Rotational Temperatures, Won et al, Journal of the Korean Physical Society, Vol. 34, No. 4, April 1999, pp.344~349

Data Collection

Nicolette 6700 Spectrometer
InGaAs Detector
Scope
Macro
Terdiurnal Tide

The Interferometer

Temperature Determination

- Relationship of photon emission intensity to upper state angular momentum for Boltzmann distribution of multiplet rotational levels
- Relative intensity at expected peaks (I)
- Ln(I/(2*A(2*J'+1)))
 - J': Total Upper Angular Momentum (1.5, 2.5, 3.5)
 - A(J'): Einstein Constants (16.74, 20.37, 21.82 s^-1)
- Plotted vs. F(J')
 - F(J'): Rotational Term Values (12,014.1, 12,089.0, 12194.5 cm^-1)
 - Linear least squares fitted
 - T=-100*h*c/(k*slope)
 - H: Planck's Constant
 - C: Speed of Light
 - K: Boltzmann's Constant

Data Filtering

Noisy data: Clouds and Alignment
Peak intensity greater than 0
Peak intensity 10x higher than average
Linear pattern with negative slope
Chi square value < .05

No Filtering

Peak Intensity Greater Than 0

Peaks 10x Average

Linear Pattern With Negative Slope

Chi Square Value < .05

Comparison With Expected Results

Change in Average T Delta T Date (K) (K) **Temperature** - Expected: 30 K Jul 09-10 93.44098 350.4082 **Average Temperature** Jul 12-13 154.9807 172.7274 - Expected: 195 K Jul 13-14 161.4956 403.7898 **Too few valid points** were found to Jul 18-19 146.4787 192.8737 attempt fitting a terdiurnal wave Jul 19-20 392.6729 279.9498 curve

Future Study

More nights needed for sampling Improve alignment method Longer sampling periods Total band intensity

Image Credits

 Background Image Whitworth University High Altitude Ballooning Hydroxyl Emission Profile D. J. Baker and A. T. Stair, Jr., Physica Scripta, 37,611 (1988). OH 3-1 Band **Application of a Michelson Interferometer to** Measurements of OH Rotational Temperatures, Won et al, Journal of the Korean Physical Society, Vol. 34, No. 4, April 1999, pp.344~349

References

- D. J. Baker and A. T. Stair, Jr., Physica Scripta, 37,611 (1988).
- Mulligan et al.: "Maynooth Optical Aeronomical Facility," Optical Engineering, Vol. 33, No. 12, 3853, December 1994.
- Shepard, Gordon G. Spectral Imaging of the Atmosphere. London: Academic Press, 2002. Print.
- H. Suzuki et al.: "Fast Spectrometer for Ground-Based Observations of OH Rotational Temperature," Applied Optics, Vol. 48, No. 6, 20 February 2009.
- H. Suzuki et al.: "Increase in OH Rotational Temperature During an Active Aurora Event," Ann. Geophys., 28, 705-710, 2012.
- M. J. Taylor et al.: "Terdiurnal Oscillations in Mesospheric OH Temperature," Earth Planets Space, 51, 877-885, 1999
- Timofeyev, Yu M., and A V. Vasil'ev. *Theoretical Fundamentals of Atmospheric Optics*. Cambridge: Cambridge International Science Publishing, 2008. Print.
 - Won et al.: "An Application of a Michelson Interferometer to Measurements of OH Rotational Temperatures," Journal of the Korean Physical Society, Vol. 34, No. 4, April 1999, pp. 344-349.

Questions?

Thanks to all who helped me this summer!