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|. Abstract Il. The IPE Model lll. Model Validation

IPE was qualitatively compared with:
*** Thermosphere lonosphere Mesosphere Electrodynamics General Circulation Model
(TIME-GCM)

*** International Reference lonosphere (IRl) empirical model

+** Constellation Observing System for Meteorology, lonosphere, & Climate

IPE is a physics-based ionosphere-plasmasphere model recently developed at NOAA SWPC
(Maruyama et al. 2013).

Model components:

*** Global ionosphere-plasmasphere model based on the Field
Line Interhemispheric Plasma Model (Richards and Torr, 1996)

Sudden Stratospheric Warming (SSW) events are large meteorological disturbances where
the northern winter stratospheric westerly winds slow down or reverse direction. The
perturbation is associated with a breakdown in the northern polar vortex, a rise in
stratospheric temperature by several tens of degrees, as well as various anomalies in the
atmosphere at higher altitudes, including the ionosphere. This is an important area of study

in order to understand the connection between the terrestrial and space weathers during * lonospheric potential solver (Richmond et al. 1992) e lonospheric parameters used for comparison:

these events. Previous studies have used ionospheric simulations to investigate the effect on ¢ APEX magnetic field coordinate system based on the 2 ** Peak electron density in the F2 region of the ionosphere (NmF2)

the ionosphere due to the forcing from SSW events. However, it has been difficult to International Geomagnetic Reference Field (Richmond 1995) p= ** The height at which the peak electron density occurs (hmF2)

quantitatively reproduce the observed ionospheric response. Major outputs of the model: 5 * Total Electron Content (TEC)

| In t.hIS work, the Ionosphere—.PIasmasphere Electrodynamlcs (IPE).mo.deI has been used to ¢ Plasma den5|t|e§ and parallel velocities (continuity and Magnetic Latitude | -“
investigate the response of the ionosphere during SSW events. We first illustrate the model’s | | momentum eqs.); ion and electron temperatures (energy eqs.) o

validity by comparison with other models and observations. We then demonstrate the ability | .' | Key features of the IPE model: Fig. 1: IPE plot of electron | NmF2 e s day =19 U=

| ¢ includes coupling between ionosphere and plasmasphere density in the

1 % combines flux tube coordinate system with IGRF coordinate | plasmasphere illustrating
system magnetic field coordinates.
¢ includes self-consistent calculation of photoelectron flux

| of the IPE model to reproduce to first order the observed ionospheric response to the large
~ ISSW event of January 2009. We study the direct impact of the equatorial drift deviations

I during the SSW event on the variations of main ionospheric parameters and investigate the
role of the coupling between ionosphere and plasmasphere in reproducing the observations.
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IV TEC Anomalies: Comparmg IPE Output with Observations during the January 2009 SSW Event
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e Source of TEC Anomalies IPE TEC Anomalies vs. Observation Role of the Plasmaspheric TEC Content
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