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Background and Motivation Model Discussion
Solar Extreme UltraViolet (EUV) irradiance is one of the major drivers of the - Recreate the EUV irradiance in each bin by using least-squares analysis to fit :
. T _— . . | Correlation
ionosphere/ thermosphere system. EUV irradiance is highly variable and observed irradiance to broadband GOES-15 EUVS & XRS data and current proxies
moreover, it is impossible to measure EUV from the ground and no space- - Give fit algorithm observed irradiance and input data and it will produce weights . Gﬂffﬁ'ﬂ“ﬂl"ﬂfﬂf“”fﬁfﬂﬂ;”“fﬂ‘*ﬁ'enflthl I
based EUV measurements of all wavelengths that span decades. So for many according to: EVE or SEE irradiance in a 5nm band = weight1 (offset) + weight2*XRSA il
years F10.7, a solar emission at 10.7cm, has been used as an EUV proxy. While + weight3*XRSB + weight4*EUVSA + weight5*EUVSB + weight6*EUVSE + . )
useful, this proxy has several undesirable characteristics when used for long- weight7* 0 7 no o0 + weight8*Mg Il index + weight9*Mg [I Smooth index + jED'B {7 E
term modeling and forecasting of the I/T system, such as leveling off and weight10* 1 AU Correction  (see ‘Relative Contributions’ for graphic results of eqn) 8 1 g
decreased accuracy during solar minimum. - Fitting algorithm returns an array of fitting weights; ten columns of weights by 2" 410y
Experimental EUV measurements are currently available through the TIMED twenty rows of bins 5 i 8
SEE (NASA Thermosphere lonosphere Mesosphere Energetics and Dynamics - We can use these weights multiplied by today’s proxy data to obtain a prediction -4 - 010"
Solar EUV Experiment) and SDO EVE (Solar Dynamics Observatory EUV for today’s EUV flux :
Variability Experiment) satellites. These are, however, scientific instruments 02 il
and thus data may not be available for long-term operations. Thus, this project Results _FitmmzDataanE'E”gzmsolarSpectmmonmm
seeks to model the EUV flux observed by these instruments as a linear T Prediction of 2017 Data
combination of other inputs from operational satellites and sources— namely, - Initially, had trouble fitting longer wavelength due to a lack of calibration in data Three Year Correlation
: , - To solve this, we used SDO EVE data for 5-40nm, TIMED SEE data for 40-105 nm : : ..
fche GOES-1’5 EUVS instrument’s A, B, and E channgls, and the GQES 15.XRS " This improved longer wavelengths, but best results still from 5-45 nm - ThIS explains Why the predictions are less accurate at longer wavelengths— the
instrument’s A and B channels, F10.7, the magnesium core-to-wing ratio. By initial correlation drops at “45nm
using real EUV data to model EUV flux, the predictive value of the proxy will be Fit - However, the irradiance as a function of wavelength (blue histogram) also drops
improved and the model will respond better to abnormal trends such as the I 075 - This means that the 45-105nm range is not as important in the models: less
It to an - Fit to TIMED Band 14 -
most recent solar cycle. F10.7 versus SOHO SEM data 110" 5.0%10° [———————— energy is deposited into the I/T system from these wavelengths.
350 - = [—Dete % £ R " f——Data | i Extremes not |7 - Also, these longer wavelengths are less variable.
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For 20 5-nm bins between 5 and 105nm, determi t of weights that will A I B I TN - As expected, B _
- For -nm bins between 5 and nm, determine a set of weights that wi s5x10” FF N\ Srifeo E 5.2x10° |- - EUVS A more y}/—g"% = ===
convert a linear combination of input data into the desired output data — a0t | Sata Ga ' 1 £ : : important at _ j
- Use these weights as a proxy model for EUV that, because it includes EUV 5 P B A Data Gap ] shorter wavelengths | [ [0
data, will be more accurate and dynamic then an F10.7 proxy alone é?'ﬁ“m : f 7 Eesaoy B 0 2 * Wavelength % b
- Cater to the needs of I/T modelers g Tt _L W - PYN, | .
- Create the full EUV spectrum from 5-105 nm at 5nm £ 65xi07 A g = ot _ _ Future Work
resolution to have similar inputs to current models o e Prediction E b ]
T 1 : See how fit weights change during a fl
- Put updated weights and data on the NOAA website so it is T 2 R - >ee how Tit weights change during a tlare
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Methods Prediction of 2011
- Gather experimental data from SDO EVE and TIMED SEE to use as outputs Fitto EVE_2011 Band 2 10-15nm F Fitto TIMED_2011 Band 15 75-80nm __ SDOsatellite, designed to measure flares.
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- Gather operational data from GOES-15 EUVS and XRS instruments as well as ! " ._ 1 |
F10.7 and Mg Il indexes i «—1 Flare - . n  Node Prediction| - Put results (fit weights and/or modeled spectrum) on NOAA’s website for
- Use the Levenberg-Marquardt least squares fitting algorithm to find the g 100 ¥ HFE 1 = - «——|Flare ] convenience, ease of use, and better implementation of the method.
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weights that will create 2012 EVE data from 2012 GOES data g k ¢ § om0t Small-scale | -
- Test, refine, and make available to the public 2 soc0’ - A 1P - - _ Va”tat'og not Conclusions
- Test how well 2012 weights work to predict 2013 and 2011 g : 3 : g 20007 e " Using EUVS data from GOES.15  of an EUV del brod
EVE data from 2013 and 2011 GOES data = 00" ] = : : - UeIng dla trom "2 d5d part ot ah EUV proxy modet proguces
— 15%10° | e 7 model that performs very well at wavelengths from ~5-45nm
Materials : ——Model Prediction | A - More data is likely necessary to improve the proxy at longer wavelengths
40x1g° ———— L 4 10x10°, ——— e e SR )
- Output data sets: SDO EVE (5-40nm) and TIMED SEE (0.5-5nm and 40- 01-11 04-11 o711 10-11 01- 0111 04-11 o7-11 10-11 0119 (current data does not span the range 34-118nm, so the proxy does not perform
105nm) well at these wavelengths)
. - Since our proxy includes EUV data, it will likely capture both long-term trends
- Input data sets: All Three Years -
and short-term variability very well
- GOES-15EUVS A, B, and E channels This model will allow us to better model the I/T system and It, to bett
- GOES-15 XRS A and B channels a FittoThree Years o Eve. Band 2 10-15nm e rFlitEoTh:eleTea:rsloflTlruﬂl::D: Blar‘[udr 13657()nm - IS moael will alliow usS to e er moae e systém and, as a result, to better
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Marquardt algorithm (damped least-squares method)




