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Background

Extreme UltraViolet (EUV) is a major driver of the
lonosphere/Thermosphere (I/T) system, along
with geomagnetic storms and forcing from the
lower atmosphere

* Modeling the I/T system is important for
developing forecast models for customers who
operate technologies affected by space weather
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Background

e Space weather can have significant effects on Earth
— GPS accuracy

— HF communication
— Power grids

— Satellite drag

— Aviation

— Manned spacecraft

— Aurora

| GeographicWeb. 23 Jul 2013

* I|tis desirable to be able to accurately predict space
weather and how it will affect us
N
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Background

* To have more accurate predictions of how space

weather will affect us, we need to have an accurate
model for EUV irradiance

e EUV is difficult to measure, so proxies are used
— Sunspot number

— F10.7 (and 81 day average)
— Mg Il (and 81 day average)
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Motivation

Sunspot number versus SOHO SEM 30.4nm data
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Motivation

F10.7 Index

F10.7 versus SOHO SEM 30.4nm data
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Leveling off at
solar minimum
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Motivation

Mg Il versus SOHO SEM 30.4nm data
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Motivation

1 + While proxies, especially Mg Il, can be useful...
— They are not actually EUV data
— They do not capture the latest solar cycle trend well

— Inclusion of 81-day average makes them impractical in
real-time calculations required for operational use

e Best solution is to use actual EUV data
— Operational measurements: GOES-15 EUVS
— Scientific measurements: SDO EVE, TIMED SEE
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Objectives

| < Create a model of the solar spectrum at 5-nm
resolution using operational data from GOES and
proxies such as F10.7 and Mg Il

* Because this proxy uses real EUV data, it will be
more effective than ground-based EUV proxies

 Make the proxy in a way that will cater to the
needs of I/T modelers
— Accurate
— Similar inputs to current models

— Readily available and easy to use
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Procedures

Use a least squares fitting technique to recreate the
observed EUV spectrum from the broad-band GOES data
and the F10 and Mg Il proxies

Use 2012 to “train” the model and determine the linear
fitting coefficients.

Examine data from 2011 and 2013 to see how well the
model works

LI

S(B) = Z[’y:' — flzi, 1*’3)]2

i=1
The Levenberg-Marquardt algorithm, our least
squares fitting technique
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The Model

e Create 5nm bins of EUV data from 5-105nm from
SDO EVE and TIMED SEE

— Because these are scientific missions, the data will not
necessarily be available forever

* Recreate the EUV irradiance in each bin by using
least-squares analysis to fit observed irradiance to
broadband GOES-15 EUVS & XRS data and current
proxies
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The Model

* Give fit algorithm EVE/SEE irradiance and all input
I data, and it will produce an array of weights:

EVE or SEE irradiance in a 5nm band =
weightl (offset) +
weight2*XRSA +
weight3*XRSB +
weight4*EUVSA +
weight5*EUVSB +
weight6*EUVSE +
weight7*F10.7 index +
weight8*Mg Il index +
weight9*Mg Il Smooth index +
weight10* 1 AU Correction
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The Model

Results of the equation from the previous slide:

Relative Contributions as a Function of Wavelength
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Methods

Gather scientific EUV measurements from the SDO
EVE instrument

Gather EUV and XRS data from GOES-15, along with
F10.7 and Mg Il daily values

Use Levenberg—Marquardt least squares fitting
algorithm to determine weights that will create EVE
data from GOES data (fit to year 2012)

Test, refine, and validate the model
— See how well coefficients predict 2011 and 2013 data
— Make sure relative contributions of coefficients make sense

Make the coefficients and/or the modeled spectrum
available to the public
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Materials

K Input data sets (what | was using to fit)
— GOES XRS A (0.05-0.4 nm) and XRSB (0.1 -0.8 nm)

— GOES-15EUVS A (5—-17 nm) and EUVS B (26 —34 nm) and EUVS E
(118 —122 nm)

— Mg Il and Mg Il (70-day smooth)

— 1 AU correction
— F10.7 ©-0071
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Materials

K Output data sets (what | was fitting to)
— SDO EVE

e Spectrum from 6-105nm with 0.1 nm resolution

— TIMED SEE

e Spectrum from 0.1-190nm with 1nm resolution (daily average
from Level 3)

LASP & NASA/GSFC
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Materials

* Fitting algorithm:
— Used mpfit 1, a more robust and reliable fitting algorithm
than IDL’s built in function, curvefit

— Uses the Levenberg-Marquardt algorithm (damped least-
squares method)

— Takes input data and desired output function (in this case, a
linear combination of the outputs) and produces an array of
parameters/weights that make the function best fit the data

— Allowed parameters/weights to be negative

* This allows us to subtract out the background to get lines that are
important in a specific bin, or vice versa

1 Markwardt, C. B. 2009, ‘Non-Linear Least Squares Fitting in IDL with MPFIT,” in proc. Astronomical Data Analysis Software and Systems XVIlII, Quebec,
Canada, ASP Conference Series, Vol. 411, eds. D. Bohlender, P. Dowler & D. Durand (Astronomical Society of the Pacific: San Fransisco), p. 251-254.
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Initial Results

| «+ Used 2012 EVE data as output
— 60-90% correlation between input and output data sets

— 1-90% correlation between 2013 fit and 2013 data
e 70-90% correlation from 5-40nm, 1-60% correlation 40-105nm
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Initial Results

E Eventually found the cause— calibration

* Began using TIMED SEE data for longer
wavelengths
— EVE for 6-40nm
— SEE for 40-105nm and 0.5-6nm

e Challenges:
— Different cadence
— How can we look at flares?

NASA 2010




Results

L« Fitis very close to actual data at short wavelengths

Fit to EVE Band 5 25-30nm
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Results

| < Fitis slightly less accurate at longer wavelengths,
but still matches up well

Fitto TIMED Band 14  70-75nm
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Results

- Then, found how well the 2012 coefficients
predicted 2013 data

Fit to EVE_2013 Band 1 5-10nm
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Results

Fit to TIMED_2013 Band 13 65-70nm
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Results

Then, saw how well 2012 coefficients predicted

2011 data
* Flare during March 2011
Fit to EVE_2011 Band 2 10-15nm
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Results

e Again, fit not as good at longer wavelengths

Fit to TIMED_2011 Band 15 75-80nm
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Results

All three years of data

Fit to Three Years of Eve, Band 2 10-15nm
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Results

Fit to Threa Years of TIMED, Band 13 65-70nm
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Discussion

Found linear Pearson correlation between data and each fit, along with
two- and three-year fits
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Discussion

| < Fitand predictions are very good for short
wavelengths (<45nm)

* Not so good for wavelengths past “45nm

— These wavelengths not as important in the models as
the amount of energy and the amount of variability at
the long wavelengths is less.
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Discussion

Wanted to check if the relative contributions from each input made
sense— shorter channels should be more important at shorter
wavelengths

Relative Contributions as a Function of Wavelength
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Future Work

L < Would be interesting to see how coefficients
change during a flare

* |n progress

e Make coefficients and methods available on NOAA
website for convenience, ease of use, and better
implementation of the method
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Conclusions

Using EUV data as part of an EUV proxy is a very
good idea

* Current project showed that predicted values are
very close to real values at short wavelengths

 More data is likely necessary to improve the proxy
at long wavelengths
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Conclusions

l < Our proxy model will likely capture long-term
trends as well as instantaneous variability

* This will allow us to better model the I/T system
and predict space weather and its effects
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Questions?
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