
Enabling Data Fusion via a
Common Data Model and

Programming Interface

Doug Lindholm and Anne Wilson
Laboratory for Atmospheric and Space Physics

University of Colorado Boulder
AGU 2011

Outline

• A Data Fusion Problem
• What is a Data Model
• Higher Level Abstractions
• Modern Programming Paradigms
• Data Model Implementation
• Solving the Data Fusion Problem
• Broader Impacts

Data Fusion Problem

• Solar irradiance at 121.5 nm from
multiple observations and proxies

• Disparate sources and formats
• Different units and time samples

netCDF

database

What do I mean by Data Model

• NOT a simulation or forecast
• NOT America’s Next Top Super_
• NOT a metadata model
• NOT a file format
• NOT how the data are stored
• NOT the representation in computer memory

• Logical model
• What the data represent, scientifically
• How the data are USED

LaTiS Common Data Model

Time series of spectra

t: time
w: wavelength
I: irradiance
dl: uncertainty

t -> (w -> (I, dI))

(See VisAD Earth Cube whitepaper)

Three core Variable types
Scalar (single Variable)
Tuple (group of Variables)
Function (domain and range)

Represents the functional relationship of the scientific data

Implementing the Data Model

• The LaTiS Data Model is an abstract representation

• Can be represented several ways
– UML

– VisAD grammar
– Java Interface (no implementation)

• Need an implementation in code

• Domain Specific Language (DSL)
– Expose an API that fits the application domain

• Scala programming language
– http://www.scala-lang.org/

Why Scala

• Evolution of Java
– Use with existing Java code
– Runs on the Java Virtual Machine (JVM)
– Command line (REPL), script, or compiled
– Statically typed (safer than dynamic languages)
– Industrial strength (Twitter, LinkedIn, …)

• Object-Oriented
– Encapsulation, polymorphism, …
– Traits: multiple inheritance, mix-ins

• Functional Programming
– Immutable data structures
– Functions with no side effects
– Provable, parallelizable

• Operator “overloading”, natural math language for Variables
• Parallel collections

The Scala Data Model Implementation

• Three base Variable classes: Scalar, Tuple,
Function

• Extend Scala collections, inherit many operations
(e.g. Function extends SortedMap)

• Arbitrarily complex data structures by nesting
• Encapsulate metadata: units, provenance,…
• Mix-in math, resampling strategies
• “Overload” math operators, natural math

processing
• Extend base Variables for specific application

domain (e.g. Spectrum extends Function), reuse
basic math or mix-in domain specific operations

Data Access Framework

Philosophy: Leave data in their native form, expose
via a common interface

• Reusable adapters (software modules) for common
formats, extension points for custom formats

• XML dataset descriptors, map native data model to
the LaTiS data model

• Catalog to map dataset names to the descriptors

// Read the spectral time series data for each mission.
// t -> (w -> (I, dI))
val sorce = reader.readData("sorce", time1, time2)
val timed = reader.readData("timed", time1, time2)

Processing the Data

Scala API (with liberties)

// Make a time series with the Lyman alpha (121.5 nm) measurements only.
var sorce_lya = new TimeSeries() // t -> (I, dI)
for ((time, spectrum) <- sorce) {
sorce_lya = sorce_lya :+ (time, spectrum(121.5))

}

// Exclude time samples with bad values.
sorce_lya = sorce_lya.filter(! _.isMissing)

// Do the same for timed_lya.
...

// Combine the two time series, with scale factors.
// Let SORCE take precedence.
composite_lya = timed_lya * 1.03 ++ sorce_lya * 1.04

Other Applications

• LaTiS server framework
– Data model implementation
– Data Access adapters
– Writer modules
– Filter plug-ins
– OPeNDAP interface, subsetting
– http://lasp.colorado.edu/lisird/tss.html

• LASP Interactive Solar Irradiance Data Center (LISIRD)
– Uses LaTiS to read data
– http://lasp.colorado.edu/lisird/

• Time Series Data Server (TSDS)
– http://tsds.net/

