
Evolution of Data Abstractions

Bits: 10110101000001001111001100110011

Bytes: 05e0 e6b0 343b 9c74 0804 e7bc

int, long, float, double, scientific notation:
 1, -506376193, 13.52, 0.177483826523, 1.02e-14

Array: (1.2, 3.6, 2.4, 1.7, -3.2)

Structure: {
 city: “San Francisco”
 time: 2012-12-04T08:00
 temperature: 60
}

Many scientific data users are still thinking of data as
arrays of numbers. In some cases, Object-Oriented
techniques have reduced the impedance mismatch
between data structures and the problems they are
used to solve. But even that paradigm is decades old.

The LaTiS data model is designed to take the data
abstraction one step further by capturing the
functional relationships that are inherent in most
scientific data.

Instead of storing times and temperatures in arrays
and manipulating them with indices, the scientific data
user can think of the data as a time series that can
be evaluated at a particular time.

The LaTiS data model is built on a mathematical
foundation that includes typed lambda calculus
and Category Theory.

Providing unified access to data via a common
interface by describing datasets in terms of a basic, yet
extensible, data model that expresses the functional
relationships that are inherent in scientific data.

Example: Time series of gridded winds

Without structural semantics, just a collection of
variables (Tuple):
 (Time, Lon, Lat, U, V)
Add “time series” semantics by factoring out Time as the
independent variable:
 Time → (Lon, Lat, U, V)
Likewise, factor out geo-location as the domain of the
gridded wind values:
 Time → ((Lon, Lat) → (U, V))
Which is logically equivalent to the 3D array:
 U[nTime][nLon][nLat]
But can also be thought of as a 3 argument function
that is evaluated by values instead of indices:
 U(time: Double, lon: Double, lat: Double)
Which can be curried:
 U(time: Double)(lon: Double)(lat: Double)
And be partially evaluated to result in a partial function:
 U(time=0) => U0(lon: Double, lat: Double)
...

LaTiS Data ModelReaders/Adapters Writers

ASCII
Adapter

JDBC Database
Adapter

Binary
Adapter

Web Service
Adapter

JSON
Writer

Image
Writer

CSV
Writer

IDL code
snippet

Custom
Formats

Scala/Java

OPeNDAP

Filters

Unit
Conversion

Mathematical
Computation

Constraints
(time > 2012)

Derived
Variables

Custom
Filters

OGC Standards: WMS/WCS (planned) Search (planned)

Programming Interfaces

Service Interfaces

Data Sources

Abstract
The steps many scientific data users go through to use data (after discovering it) can be
rather tedious, even when dealing with datasets within their own discipline. Accessing
data across domains often seems intractable. We present here, LaTiS, an Open Source
brokering solution that bridges the gap between the source data and the user's code by
defining a unified data model plus a plugin framework for "adapters" to read data from
their native source, "filters" to perform server side data processing, and "writers" to
output any number of desired formats or streaming protocols.

A great deal of work is being done in the informatics community to promote multi-
disciplinary science with a focus on search and discovery based on metadata -
information about the data. The goal of LaTiS is to go that last step to provide a uniform
interface to read the dataset into computer programs and other applications once it has
been identified.

The LaTiS solution for integrating a wide variety of data models is to return to
mathematical fundamentals. The LaTiS data model emphasizes functional relationships
between variables. For example, a time series of temperature measurements can be
thought of as a function that maps a time to a temperature. With just three constructs:
"Scalar" for a single variable, "Tuple" for a collection of variables, and "Function" to
represent a set of independent and dependent variables, the LaTiS data model can
represent most scientific datasets at a low level that enables uniform data access.
Higher level abstractions can be built on top of the basic model to add more meaningful
semantics for specific user communities.

LaTiS defines its data model in terms of the Unified Modeling Language (UML). It also
defines a very thin Java Interface that can be implemented by numerous existing data
interfaces (e.g. NetCDF-Java) such that client code can access any dataset via the
Java API, independent of the underlying data access mechanism. LaTiS also provides a
reference implementation of the data model and server framework (with a RESTful
service interface) in the Scala programming language. Scala can be thought of as the
next generation of Java. It runs on the Java Virtual Machine and can directly use Java
code. Scala improves upon Java's object-oriented capabilities and adds support for
functional programming paradigms which are particularly well suited for scientific data
analysis. The Scala implementation of LaTiS can be thought of as a Domain Specific
Language (DSL) which presents an API that better matches the semantics of the
problems scientific data users are trying to solve. Instead of working with bytes, ints, or
arrays, the data user can directly work with data as "time series" or "spectra". LaTiS
provides many layers of abstraction with which users can interact to support a wide
variety of data access and analysis needs.

IN21B-1481

Doug Lindholm (doug.lindholm@lasp.colorado.edu
Anne Wilson (anne.wilson@lasp.colorado.edu)

LaTiS
Fill my array!

Object Diagram
C

o
re

 D
a

ta
 M

o
d

e
l

B
a

si
c

 E
xt

e
n

s
io

n
s

C
u

s
to

m
 E

xt
e

n
s

io
n

s

 <dataset>

 <function type=”TimeSeries”>

 <scalar name=”time” type=”Time”/>

 <function name=”grid”>

 <tuple name=”geoloc”>
 <scalar name=”lon” type=”Real”/>
 <scalar name=”lat” type=”Real”/>
 </tuple>

 <tuple name=”wind”>
 <scalar name=”u” type=”Real”/>
 <scalar name=”v” type=”Real”/>
 </tuple>

 </function>

 </function>

 </dataset>

Dataset Descriptor

Custom
Adapters

NetCDF
Adapter

Lowering the Barrier to Cross-Disciplinary Scientific Data Access
via a Brokering Service Built Around a Unified Data Model – LaTiS

Binary Data

Big Data

Text Data

Aggregations

Tabular Data

Databases

Web services

Simulations

Bob RESTful Web Service Interface

Implements the OPeNDAP (DAP2) specification:

Usage:
 http://server/latis/dataset.suffix?projection&selection&filter

suffix: type of output/writer
projection: list of variables to return
selection: relative constraint
 (e.g. time>=2012-01-01)
filter: One or more functions to be applied to the
data

Example:
http://lasp.colorado.edu/lisird/tss/historical_tsi.csv?
time,Irradiance&Irradiance>1361.5

- Easily deployed as a Java Servlet with a highly
extendable plug-in architecture.
- Other service interfaces can be layered on top of the
LaTiS programming API.

See Also

LASP Interactive Solar Irradiance Data Center
(LISIRD): http://lasp.colorado.edu/lisird/

Time Series Data Server (TSDS): http://tsds.net

Scala/Java Programming API

●Designed around Functional Programming
principles including typed lambda calculus and
Category Theory

● Immutable data structures with no side-effects
promote provable and parallelizable code

●Lazy evaluation means that data will be read
only as needed, enabling the manipulation and
streaming of arbitrarily large datasets

●Syntax enables natural mathematical
expressions with data model components

Domain Specific Language (DSL)
for Scientific Data Analysis (planned)

Make use of Scala's syntactic sugar and take
advantage of it's command-line interface (REPL)
and scriptability to provide a simplified language
that more directly meets the needs of data
users.

mailto:doug.lindholm@lasp.colorado.edu
mailto:anne.wilson@lasp.colorado.edu
http://server/latis/dataset.suffix

