
Global Forecast System (GFS) Analysis
(gfs-004-anl) surface winds

The GFS data are stored in numerous grib2 files.
The LaTiS software can be used to encapsulate this
file collection as a single virtual dataset modeled as:
 (time, height, lat, lon) → (U, V, ...)

We can group by time and project just the wind parameters we
want to get:
 time → (height, lat, lon) → (U, V)

We can now evaluate this Function for our desired time to get a
3D field of winds:
 (height, lat, lon) → (U, V)

Since we've been doing things with “(lon, lat)” let's group by
(lon, lat) to get height profiles at a function of location:
 (lon, lat) → height → (U, V)

We know that there are three height levels: 10, 80, 100. We
could use a selection (height = 10) to get the height we want,
but let's try it another way. We can do a pivot on “height” to
collapse that spatial dimension adding more Scalars to our
codomain Tuple:
 (lon, lat) → (U10, U80, U100, V10, V80, V100)

Now we can project the variables we want:
 (lon, lat) → (U10, V10)

Since we care about the wind magnitude, we can compose our
wind field with the continuous function:
 magnitude = (x,y) => sqrt(x^2 + y^2)

Resulting in a grid of wind speeds:

 winds: (lon, lat) → speed

MODIS Satellite Infrared Radiance

Jpeg images are available via the NASA GIBS
Web Map Tile Server (WMTS). We can model
these data as a time series of red-green-blue images:
 images: time → (row, col) → (R, G, B)

First we need to identify the tile we want. The WMTS Capabilities
defines the tile set with a bounding box for each tile which we
can model as:

 tile_set: (tile_row, tile_col) →
 (lon_min, lon_max, lat_min, lat_max)

Use the geo-location from the hot spot event and apply
selections to get the coordinates of the tile we need:
 event_lon = event_geoloc.project(“lon”)
 event_lat = event_geoloc.project(“lat”)

 tile = tile_set.select(“lon_min < event_lon”)
 .select(“lon_max > event_lon”)
 .select(“lat_min < event_lat”)
 .select(“lat_max > event_lat”)

Extract the row and column for the resulting tile so we can
construct the WMTS URL and request the image:
 trow = tile.project(“tile_row”)
 tcol = tile.project(“tile_col”)

 image = get_image(event_time, trow, tcol)

The resulting jpeg image can be modeled as:
 image: (row, col) → (R, G, B)

Based on the tile_set above, we can define a coordinate
system transformation:
 transform: (row, col) → (lon, lat)

As in Functional Programming we can map this function over our
image to get:
 geo_image: (lon, lat) → (R, G, B)

If we have a color table for the image, we can model it as:
 color_table: (R, G, B) → flux

Using Function composition we can complete the transition of
the image to a geo-referenced grid of IR radiance:

 ir_flux: (lon, lat) → flux

 Hot Spot Detection Event

Message received as a Google Protocol Buffer.
Use the FDM to model the event as nested Tuples:

 event: (description, time,
 location: (x, y, z))

Extract the time and location using projections:

 event_time = event.project(“time”)
 event_loc = event.project(“location”)

Note that event_loc is a Tuple: (x, y, z) represented in a
different coordinate system. The coordinate system
transformation could be a traditional continuous function or
a FDM sampled Function with an interpolation strategy:

 transform: (x, y, z) -> (lon, lat, alt)

Evaluate this transform with the event location:

 event_geoloc = transform(event_loc)

Functional Algebra: Operations that
can be applied to datasets that are
represented in the form of the
Functional Data Model.

Selection:
Filter out samples of a Function based on a
boolean expression (predicate).

Projection:
Filter out elements of a Tuple.

Join:
Combine Functions based on a common
domain type (as opposed to a common column
name as in Relational Algebra).

Interpolation:
Since Function samples are ordered,
interpolation strategies can be used with joins
to apply regridding operations.

Function Evaluation:
Evaluate a Function with a variable of the type
of its domain. With an interpolation strategy, a
data Function can be used as a continuous
function.

Function Composition:
Compose two Functions such that the output of
one becomes the input of the other.

Group By:
Factor out a variable to be the domain, implying
a new ordering. With nested Functions
aggregation is not required as in SQL.

Other Functional Programming Constructs

Locate At-Risk Properties

An Excel spreadsheet contains information about
homes in the region. LaTiS can be used to model
it as a sequence of addresses and their locations:
 homes: index → (address, lon, lat)

For each hazardous location, select all homes within a given distance:
 bad_homes = homes.filter(home => {
 home_loc = home.project(“lon,lat”)
 distance(bad_loc, home_loc) < MAX_DIST
 })

Get the addresses of the endangered homes:

 addresses = bad_homes.project(“address”)

This poster depicts a scenario to demonstrate how data from diverse disciplines can be
brought together dynamically to solve a problem by representing data sources in terms of the
Functional Data Model (FDM) and using Functional Algebra and Functional Programming
principles to manipulate data. The LaTiS (https://github.com/latis-data/latis) software
implementation of the FDM is designed to enable such scenarios with its interactive command
line interface and Scala/Java API.

Scenario:
An Air Force missile detection system identifies a hot spot as a wildfire. Emergency
responders receive the notification and access infrared satellite imagery, forecast winds, and
population data in order to allocate the appropriate resources to respond to a potential wildfire.

Enabling Cross-Discipline Collaboration via a Functional Data Model
Doug Lindholm, Anne Wilson, Tom Baltzer

IN31D-1788

Relational Data Model
- Attribute (column)
- Tuple (row)
- Relation (table):
Set of Tuples.
Unique but not ordered.

Principle of Least Power as it applies to data interoperability:
 - Domain specific technologies inhibit interoperability.
 Too specialized.
 - Raw data values can easily be integrated but they
 lack useful context.
 - The Functional Data Model provides an appropriate
 level of abstraction to facilitate data interoperability.

The Functional Data Model (FDM) is a specialization of the
Relational Data Model in that relations are limited to
Functions. In addition to inheriting the benefits of the
Relational Data Model (used by many database systems),
the FDM captures the functional semantics between
independent (domain) and dependent (codomain) variables
that are inherent in scientific data.

Functional Data Model
- Scalar: single variable
- Tuple: collection of variables
- Function: Ordered set of
discrete samples. Interpolation
strategy makes the Function
“continuous.”

Time Temp Humidity
2016-12-14
00:00:00Z

45.1 68.0

2016-12-14
01:00:00Z

43.7 72.3

2016-12-14
02:00:00Z

42.9 78,4

Time → (Temp, Humidity)

Scalars

Function Tuple

Example: Time series of temperature and humidity

Start

Identify Hazardous Locations

We can now join the IR data with the wind data (with an
interpolation strategy to put the winds on the IR grid):
 ir_wind: (lon, lat) → (flux, speed)

Find all the locations where there are hot spots and high
winds:
 ir_wind.select(“flux > MAX_FLUX”)
 .select(“speed > MAX_WIND”)
 .project(“lon, lat”)

This will yield a sequence of locations:

 bad_locations: index → (lon, lat)

2 3

4

5

