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@ Mission Objectives

Curiosity’s primary scientific goal is to
explore and quantitatively assess a local
region on Mars’ surface as a potential habitat
for life, past or present

» Assessing the past and present biological potential of
Mars
* Inventory of the organic and inorganic compounds and
their processes of preservation

» Characterizing surface geology and geochemistry
» Chemical, mineralogical and isotopic composition of
Martian surface and subsurface + geological processes

» Investigating planetary processes that influence
habitability
» Understand long-term atmospheric evolution processes
(4 G-yr).
» Determine the state, distribution and cycle of water and
CO2

» Prepare sample return and manned missions to Mars
 Capability of landing of a considerable size/mass rover
 Capability of landing in a 20 km wide ellipse
* Radiation exposition measures NASA/JPL-Caltech
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Landing Site: Gale Crater
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150-km Gale Crater contains a 5-km high mound of stratified
rock. Strata in the lower section of the mound vary in
mineralogy and texture, suggesting that they may have
recorded environmental changes over time. Curiosity is
investigating this record for clues about habitability, and the
ability of Mars to preserve evidence about habitability or
life.
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@ Why Gale Crater ?
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I |
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Bibring et al. (2006)

Stratigraphic change from clay-dominated
to sulfate-dominated environments suggests
that Gale Crater strata might record a critical transition
in the history of the martian surface



Chronology of major events
changing the Martian atmosphere
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End of Mars’ dynamo
(Acufia etal., 1998) After Jakosky and Jones (1997)




@ ' Isotopic composition = atmospheric fingerprints

Volatiles on Mars:
Simplified Reservoirs and Interactions

Atmosphere

(Outgassing) Rocks

Crustal (Radiogenic decay)
Fluids

Most processes responsible for the evolution of the atmosphere produce isotopic fractionation

(Buffering)

Polar cap Polar cap




Earth’s atmopshere as an example
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@ Martian atmosphere isotopic fractionation

Analyses of trapped gas in SNC
meteorites show that the Martian
atmosphere is also enriched in heavy
isotopes.

Martian meteorite EETA79001

This results is in agreement with the
less accurate isotopic measurements
of the Viking Landers.
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@/ Constraining the climate history of Mars

MSL - Part I:

» Current state of the atmosphere

» Current atmospheric exchange with
surface reservoirs

» Ancient atmospheric records in rocks




@ Diurnal and seasonal atmospheric
pressure variation

» Each day the pressure
varies by over 10% REMS ata
(compared to one tenth of
1% for earth)

» Solar heating of the
ground drives a pressure
“tidal wave” that sweeps
across the planet each day

Pressure (Pascals)

» Overall, the pressure is
increasing as carbon
dioxide sublimates from
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@ Atmospheric Shielding

» RAD observed galactic

cosmic rays and five solar

energetic particle events
traveling from the Sun to
Mars

» The atmosphere of Mars
partially shields the
surface from radiation.
When the atmosphere is
thicker (higher REMS
pressure), RAD measures
less radiation
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Tunable Laser Spectrometer
' -8 Sample Manipulation Systems



@ Atmospheric and solid sample Analyses
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> SAM found that argon, rather than
nitrogen is the second most abundant
gas.
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C and O Isotopic ratios




C and O loss process

Closs to Cin Closs
carbonates polar caps to space
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36Ar/38Ar - a robust signature of atmospheric loss from Mars
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@, First measurement of Deuterium/hydrogen
on the surface Mars

R | > D/H is one of several isotope ratios
used to track the extent of
atmospheric escape and the change
from early environments
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‘wijv More atmospheric measurements to come

 Atmospheric enrichment experiments
> 15N/14N
» Heavy Noble gases (Kr, Xe)

» CH,
e Measurements of diurnal and seasonal

variations of atmospheric composition



In-situ data from MSL support the
hypothesis of substantial atmospheric
loss, dominantly to space

MAVEN will provide the data needed to
determine the extent and the chronology
of this atmospheric loss



@/ Constraining the climate history of Mars

MAVEN - Part Il:

» Current state of the upper atmosphere
» Current rate of loss to space

» Integrated atmospheric loss

MSL - Part I:

» Current state of the atmosphere

» Current atmospheric exchange with
surface reservoirs

» Ancient atmospheric records in rocks




MAVEN — MSL Synergy

MSL measures
composition of gas at
the bottom of the
atmosphere

MAVEN measures
composition on gas at
the top of the
atmosphere

Integrated look at the present-
day atmosphere and escape

processes

MSL measures
composition of ancient
atmosphere in Rocks

MAVEN measures the

impact of variation of

the driving processes
on escape rate

history of the atmosphere




They will even chitchat
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