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Abstract We report the detection of intense emission from magnesium and iron in Mars’ atmosphere
caused by a meteor shower following Comet Siding Spring’s close encounter with Mars. The observations
weremade with the Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere
and Volatile EvolutioN spacecraft orbiting Mars. Ionized magnesium caused the brightest emission from the
planet’s atmosphere for many hours, resulting from resonant scattering of solar ultraviolet light. Modeling
suggests a substantial fluence of low-density dust particles 1–100μm in size, with the large amount and small
size contrary to predictions. The event created a temporary planet-wide ionospheric layer below Mars’ main
dayside ionosphere. The dramatic meteor shower response at Mars is starkly different from the case at Earth,
where a steady state metal layer is always observable but perturbations caused by even the strongest meteor
showers are challenging to detect.

1. Introduction

Shortly after the discovery of Comet Siding Spring (C/2013 A1), orbit determinations identified a very close
passage by Mars on 19 October 2014. Motivated by concerns over spacecraft safety, detailed modeling of
cometary dust predicted relatively low risk of spacecraft damage from dust impacts [Kelley et al., 2014;
Moorhead et al., 2014; Vaubaillon et al., 2014; Tricarico et al., 2014]. The effect of dust on Mars was of
particular interest for its potential ionospheric effects [Withers, 2014], as prior observations of Mars’
ionospheric structure identified transient layers attributed to meteor influx [Withers et al., 2008]. Cometary
gas impact was also considered for its potential effects on Mars’ upper atmosphere [Yelle et al., 2014].
Accurate predictions were challenging due to the lack of precedent: the interval between such near miss
events of the observed value of 141,000 km has been estimated at 100,000 years [Ye and Hui, 2014]. Dust
ejected from the comet was expected to remain confined in a stream that lagged behind the comet in its
orbit and was predicted to intercept the planet about 2 h after the comet’s closest approach. Dust was
expected to impact the hemisphere centered near the morning terminator close to the equator.

The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft entered Mars orbit on 21 September 2014,
about a month before the comet encounter, on a mission to study the behavior of the upper atmosphere and
the escape of its constituent gases to space [Jakosky et al., 2015].MAVEN orbits Mars on a 4.5 h elliptical orbit,
with a closest approach to Mars’ surface at periapse of 150–200 km. Prior to the comet encounter, MAVEN’s
orbit was phased to place the spacecraft behind Mars (relative to the dust flux) at the predicted time of
maximum risk. The spacecraft stopped observations and was commanded into a protective mode. MAVEN
restarted observations within 6 h of closest approach, i.e., 4 h after maximum predicted dust passage.

2. Observations

MAVEN carries one remote sensing instrument for the study of Mars’ upper atmosphere, the Imaging
UltraViolet Spectrograph (IUVS) [McClintock et al., 2014]. The instrument captures spectra of the planet and
its atmosphere in the far UV (110–190 nm) and mid-UV (190–340 nm), ideal for recording well-known
atmospheric emissions from CO2 and its dissociation and ionization products. The instrument is mounted
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on an Articulated Payload Platform (APP)
that can orient IUVS’s field of view relative
to Mars depending on spacecraft location,
orientation, and desired viewing geometry.
During periapse, the APP orients IUVS to
look to the side of spacecraft motion, allow-
ing IUVS to use a scan mirror to repeatedly
map out the vertical structure of the atmo-
sphere while the spacecraft travels ~90°
of arc around the planet. IUVS is capable of
other observing modes in other parts of the
orbit, but no effects of the comet passage
have yet been detected in those data.

IUVS repeated its periapse observations
every orbit from MAVEN Orbit 109 (18
October 16:05 UT start time) to Orbit 128
(22 October 07:49 UT), with the exception
of Orbit 115 when the spacecraft stood
down during maximum predicted dust flux.
Data were corrected for detector dark cur-
rent, scaled according to intensity calibra-
tion, and binned in altitude above the
surface. Cleaned spectra and vertical pro-
files of individual emissions were obtained
through multiple linear regression fits of
independent spectral components, account-
ing for molecular bands, atomic lines, and

reflected solar spectrum background, as well as instrumental resolution and instrumental offsets [Stevens
et al., 2011]. Sensitivity calibration is not yet complete, so we bracket the plausible range of emission
intensities between the value obtained using preliminary stellar calibrations and that obtained by scaling
relative to airglow emissions as measured by the Spectroscopy for Investigation of Characteristics of the
Atmosphere of Mars (SPICAM) instrument on Mars Express scaled to the same solar distance and activity
[Leblanc et al., 2006]. The factor of two systematic brightness difference between these two calibrations
dominates over random errors, so we propagate it as the uncertainty in derived numerical values that follow.
But calibration uncertainty has no effect on spectral identifications or relative emission brightnesses
associated with geographic, vertical, and temporal variability.

3. Results

Figure 1 shows a typical mid-UV spectrum of Mars 3 h prior to Comet Siding Spring’s closest approach and 6 h
after. Readily apparent in the inset, with the underlying Mars’ spectral features subtracted, are new emissions
from Mg+, Mg, Fe+, and Fe that were not present before the comet encounter. The brightest emission from
the Mars atmosphere for several hours after closest approach was caused by ionized magnesium. Stellar
calibration yields a peak intensity of 41 kR for the Mg+ line, while airglow scaling yields a value of 21 kR.
While such emissions had never been observed in Mars’ atmosphere, the spectrum closely resembles that
seen in Earth’s upper atmosphere [Anderson and Barth, 1971; Dymond et al., 2003] attributed to metal ions
and atoms added to the atmosphere through meteor ablation.

All identified metal emissions arise from resonant scattering of solar UV light, rather than direct excitation of
the atoms and ions through ablation. Mg+ and Fe+ detection is confirmed by MAVEN’s Neutral Gas and Ion
Mass Spectrometer (NGIMS) instrument, which detected 10 additional ions [Benna et al., 2015]. The model
spectrum was constructed using line positions for the four emitting species, atomic constants for resonant
scattering, and the solar MUV spectrum [Smith et al., 1995; Dymond et al., 2003; Kelleher and Podobedova,
2008; McClintock, 2014; A’Hearn et al., 1983]. In addition to the fainter features identified in Figure 1,

Figure 1. Spectra of Mars’ atmosphere immediately before and after
the closest approach of Comet Siding Spring, taken during Orbit 114
on 19 October 2014 at 15:20:00 UTC and Orbit 116 on 20 October
2014 at 00:35:39 UTC. Both 4.6 s spectra were obtained near a tangent
altitude of 119 km at approximately 14 h local time and a solar zenith
angle near 60°. Spectra have been scaled and their backgrounds
matched. The inset shows a smoothed residual spectrum in red on
an expanded vertical scale, obtained by modeling and subtracting
known Mars emissions and backgrounds. Numerous emissions from
Mg+, Mg, Fe+, and Fe are present, indicated by the overplotted model
spectrum. The residual spectrum also suggests that other unidentified
features are present. The ±1σ random uncertainty per pixel is ~0.05
in these units.
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several comparably small spectral
features persist from spectrum to
spectrum but have not yet been
identified. In the day preceding the
meteor shower, the Mg+ line was
undetectable at <4% of its post-
comet peak value. No other new fea-
tures were detected outside this
spectral range nor substantial varia-
tions in the known Mars’ emissions
coinciding with the comet passage.

Figure 2a shows a vertical profile of
Mg+ emission from one altitude scan
of Orbit 116, peaking around 115 km
and falling off rapidly with increas-
ing altitude with an exponential
scale height of ~2 km. A profile of
the CO2

+ UV doublet at 289 nm
emission is shown as a fiducial for
the background atmosphere and
ionosphere, with its peak at 130 km
and an ~16km scale height. Together,
these profiles demonstrate that the
Mg+ was narrowly confined in a
layer 10–20 km below the CO2

+ UV
doublet peak located at a few nano-
bars pressure.

The vertical emission profile can be iteratively modeled to retrieve the underlying density distribution. We
used the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) model developed originally for
terrestrial use [Strickland et al., 1999] but recently adapted for use at Mars for IUVS retrievals. AURIC uses
the REDISTER algorithm [Gladstone, 1982] in optically thick cases. The Mg+ emission feature is a doublet,
with the stronger line at 279.6 nm twice as optically thick as the weaker line at 280.4 nm. For minimum
and maximum calibration values used, we find the optical depth at line center for the stronger line ranges
from τ = 2.2 to τ = 11 at 120 km altitude. Figure 2a shows the modeled limb radiance profile, and Figure 2b
shows the retrieved density profile. At the calibration minimum and maximum, the peak ionospheric Mg+

density ranges from 5× 103 to 3 × 104Mg+ ions cm�3 around 120 km. We carry this factor of 6 forward as
the plausible range of quantities derived from these measurements. The high end of this ion density range
is close to the steady state daytime density of the Mars ionosphere but occurs 10–20 km lower than the
typical peak altitude.

Figure 3 shows the combination of spatial distribution and temporal evolution of Mg+ emission captured
with IUVS observations over one Mars day. Measurements before the comet’s passage (Orbit 114, at
right) are consistent with little or no Mg+ in the atmosphere. Emission is intense in Orbit 116 and again
4.5 h later on Orbit 117 and generally subsides in Orbit 118 and beyond. The widespread Mg+ distribution
evident in Figure 3 indicates a virtually global phenomenon, as opposed to a localized impact region on
the planet. In fact, Mg+ is evident in all scans of the first seven orbits (more than one Mars day) after
closest approach, suggesting either the dust stream impact lasting at least one Mars rotation or lateral
redistribution on the planet on the same time scale. Additional observations, to be described in a later
paper, show Mg+ slightly increasing after one Mars rotation and persisting in some regions for up to two
Mars days.

Figure 3 (top) shows the vertical distributions from each scan on each orbit. To first order, the profiles are
similar with a common peak near 115 km and a scale height of a few kilometers. Deviations from this
pattern are evident in later orbits and more northerly latitudes. Nonuniform geographic and vertical

Figure 2. (a) Vertical profiles of metal species and CO2
+ obtained from the

same scan as Figure 1. The red band shows IUVS Mg+ emission measurements
spanning the factor of 2 range of calibration values. The green lines show the
best fit to the data using a physical model of the atmosphere and emission
physics. The Figure 1 spectrum was obtained at the peak of this scan.
(b) Retrieved density profile, with thewidth of the band indicating the range of
retrieved densities consistent with the range of calibration factors. The factor of
2 range in intensity leads to a factor of 6 in ion density due to the nonlinear
effects of optically thick radiative transfer. The sharpness of the density peak is
exaggerated by the coarse sampling of the retrieval.
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distributions could be caused either by uneven deposition of dust on the atmosphere, winds and other
transport processes, variable rates of chemical reactions which remove Mg+, or some combination.

4. Conclusions

Observations of meteoric ions in Mars’ atmosphere can offer profound insights into the nature of comets
and of Mars’ atmosphere. Numerical modeling of the ablation process can match the initial vertical

profile of Mg+, as shown in Figure 4.
We use CABMOD (Chemical Ablation
Model) [Vondrak et al., 2008] validated
in terrestrial studies, which includes
heating and melting of dust particles
from collisions with the ambient
atmosphere, evaporation of atoms
from the molten particle surface, and
prompt ionization caused by collisions
with the ambient gas at the dust rela-
tive velocity of 56 km/s. The vertical
profiles of the injected metals are
input into a 1-D atmospheric model
[Whalley and Plane, 2010], which con-
tains detailed chemistry ofmagnesium
and iron based on laboratory studies
of pertinent reaction rates including
photoionization and charge exchange.
The model contains turbulent (eddy)
diffusion up to the Mars turbopause
(~135 km) and the ambipolar diffusion
ofmetal ions above.While thematches
to both vertical profiles are good,

Figure 3. (top) Above the map are altitude profiles of the Mg+ emission in relative units. The vertical profiles modeled in
Figures 2 and 4 are highlighted with black lines, and the location of the spectrum shown in Figure 1 is indicated with a black
dot. (bottom) Spatial distribution and temporal evolution of Mg+ emission. Superposed on a map of Mars are circles whose
size represents the relative amount of Mg+ emission present as a function of altitude at different locations on Mars. The
circle centers show the locations below the line of sight tangent points during the altitude scan. Each swath across the
planet is composed of 12 altitude scans made during a single periapse pass, starting at the time indicated at northern
latitudes and passing south to the equator over 22min. The first observations are shown at right, with successive swaths
appearing to the left (west) as the rotation of the planet carries those regions into the IUVS field of view. The series starts
at right with Orbit 114, followed by an observing gap during Orbit 115, then the detection of bright emissions in Orbit 116
and subsequent decline. The star at bottom indicates the direction of the relative velocity betweenMars and the comet at the
moment of closest approach and the motion of this point in the following hours.

Figure 4. Retrieved Mg+ density profiles from AURIC compared to CABMOD/
1-D model output profiles. The left model profile more closely resembles the
initial injection of Mg+ into the atmosphere, and the right profile shows its
subsequent evolution in the atmosphere.

Geophysical Research Letters 10.1002/2015GL063863

SCHNEIDER ET AL. MAVEN/IUVS METEOR SHOWER OBSERVATIONS 4



the CABMOD model generally predicts lower-altitude deposition by 5–10 km. The observed and modeled
transport of Mg+ to higher altitudes on Orbit 117 is good agreement with an in situ mass spectrometric
measurement by the Neutral Gas and Ion Mass Spectrometer instrument on MAVEN on subsequent orbits
[Benna et al., 2015].

The ionospheric density profiles retrieved by AURIC (Figure 2, using the higher end values) and modeled by
CABMOD/1-D model (Figure 4a) are comparable to the profiles reported by the Mars Advanced Radar for
Subsurface and Ionosphere Sounding (MARSIS) instrument on Mars Express [Gurnett et al., 2015] and
Shallow Radar on Mars Reconnaissance Orbiter [Restano et al., 2015], both attributed to the Comet Siding
Spring meteor shower. There are some significant differences which merit further analysis. In particular,
the MARSIS-observed ionospheric layer appears to lie at lower altitudes than the metal ion layer we report.
It remains to be seen whether this difference means that two distinct layers are present, whether the
ionospheric layer is different at the times and places observed, or whether the two independent methods
of detection are biased to yield somewhat different results. Similarly, the profiles derived here are
comparable in density but higher in altitude to ionospheric profiles attributed to meteor ablation on Mars
in the past [Withers et al., 2008] and predicted for Comet Siding Spring [Withers, 2014].

Our atmospheric model follows the chemical evolution of meteoric metals and their reaction with background
gases. In the model, Mg+ recombines by forming clusters with CO2 that then undergo dissociative
recombination with electrons [Whalley and Plane, 2010]. One important consequence of this recombination
pathway is that the modeled column abundance of Mg between 100 and 120 km reaches ~50% that of Mg+

after about 12 h. Since the UV scattering efficiency of Mg is about 3 times larger than that of Mg+, the model
predicts that as time progresses, Mg emission should exceed that from Mg+. This is not observed, and the
continuous low brightness of Mg emission suggests that either Mg+ is being destroyed without creating Mg
or that Mg itself is lost as rapidly as it forms. Either way, the observations provide strong evidence that
chemical pathways at Mars are significantly different than at Earth. The eventual fate of the metals deposited
in Mars’ atmosphere by Comet Siding Spring will be to form neutral compounds (oxides, hydroxides, and
carbonates) that then polymerize into particles known as meteoric smoke [Saunders and Plane, 2006]. These
aerosols may persist in the Mars atmosphere for years, as they do at Earth [Dhomse et al., 2013], interacting
with sunlight with potentially significant effects.

Another Earth-Mars difference bears closer examination. On Earth, the continuous arrival of sporadic meteors
(those not associated with any meteor shower) creates an omnipresent metal layer in Earth’s atmosphere
[Langowski et al., 2015]. This layer is sufficiently dense that the addition of metallic material in meteor
showers is small by comparison and is challenging to detect by in situ measurements [Grebowsky et al.,
1998] and never detected by remote sensing. By contrast, a steady state layer from sporadics has never
been detected at Mars, while Comet Siding Spring created a readily observable phenomenon. This apparent
discrepancy could be explained by (1) the extreme nature of the Siding Spring event, (2) an intrinsically small
supply of sporadic meteors at Mars, or (3) unidentified metal loss processes preventing the accumulation of
detectable amounts from sporadics. Deeper searches are underway for steady state emission below the IUVS
4% upper limit and for other meteor shower events; these could distinguish among the possibilities above.

The critical sensitivities in the CABMOD model are the particle size, density, and the total dust deposition.
Submicron-sized particles are slowed high in the atmosphere and never heat enough to ablate. Conversely,
particles larger than 100μm penetrate to altitudes below 105km before significant ablation occurs. In
order to produce a layer of Mg+ between 105 and 120 km, the cometary dust particles need to be small
(radius< 100μm) and low density (<1g cm�3, characteristic of fractal-like agglomerates). These properties
are consistent with the bottom end of the range of cometary dust particles collected in Earth’s stratosphere
[Brownlee, 1978]. Particles of this size, however, were expected to miss Mars based on their estimated
ejection velocities and the influence of radiation pressure [Kelley et al., 2014; Moorhead et al., 2014; Tricarico
et al., 2014]. This may indicate that small dust particles were ejected at velocities above 3ms�1.

The 1-D model match to the Orbit 116 profile requires a dust deposition of 0.4–2.2× 10�7 g/m2, depending on
the calibration used and assuming a cosmic dust composition of 10.3% magnesium by mass. Applied
hemispherically, the total mass deposited on Mars would have been 2700–16,000 kg. We can place the
magnitude of the Siding Spring event in context by comparing our derived mass with predictions and
with terrestrial meteor showers. While our observations do not directly constrain the population of particles
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>1mm which create easily visible shooting stars, we can roughly estimate their abundance assuming a dust
size distribution function with a power law exponent of �2.6 [Moorhead et al., 2014]. We find that the
deposition fluence at Mars of particles larger than 1mm is 0.5–3×10�6m�2. The top of our range is 30
times larger than some predictions [Tricarico et al., 2014] but factors of 1200 and 24,000 times smaller than
others [Moorhead et al., 2014; Vaubaillon et al., 2014]. A human observer under good conditions (area of sky
seen by naked eye=3.7× 104 km2) would therefore have observed a zenith hourly rate of ~0.2–1×105

visible meteors per hour (or 5–30 meteors per second) for more than an hour. Such an intense meteor
shower has not been observed globally in modern times on Earth, although the Leonid meteor shower of
1833 may have been comparable [Asher, 1999]. The intensity of the Comet Siding Spring meteor shower,
coupled with Mars’ lack of a significant steady state metal layer, makes this event a unique window into
understanding major perturbations to a planetary atmosphere.
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