The Sun's Influence on Planetary Atmospheres

Frank Eparvier

eparvier@colorado.edu

University of Colorado,

Laboratory for Atmospheric & Space Physics

Who am I?

Dr. Frank Eparvier

```
Research Scientist @ LASP 
Training in Aeronomy
```

Aeronomy = study of how energy inputs drive the physics and chemistry a planetary atmosphere

Experimentalist: I like to measure things

"Experiment is the test of all knowledge."

Currently work with instruments that measure the solar photonic output of aeronomical importance:

Co-I on TIMED-SEE
Co-I on SDO-EVE
PI on GOES-R EXIS
Lead on MAVEN-EUVM

Storytelling

- Personal Recollection: My first aurora
- Historical Event: The Carrington event
- Here and Now: How space weather affects Earth
- There and Now (and Then): How space weather affects other Planets (Mars in particular)

Personal Story

- Northeast Wisconsin, August 1983
- A young scientist "sees the light"

History: Someone Else's Story

- Thursday, September 1, 1859, 11:18 am
- Richard Carrington, a British astronomer, was observing the Sun
- Saw a "white light flare" that lasted a few minutes

The Next Day

- All heck broke lose
- Telegraph operators around Europe & US had problems:
 - Could transmit without turning on their power
 - Sparks flew from equipment
 - Fires broke out and burned down stations
- Aurora were seen far to the south of normal
 - · Cuba, Bahamas, Jamaica, Hawaii, Rome, Hong Kong
- Carrington speculated the solar and terrestrial events were connected
 - Many scientists poo-pooed the idea that what happened on the Sun could affect the Earth

The Story Starts at the Sun

- Gives off energy of many forms
 - Light
 - of all wavelengths
 - Solar Wind
 - Charged particles
 - Magnetic fields
- The Sun is constantly changing
 - On all time scales from seconds to centuries
 - On all size scales from millimeters to megameters

1999-Aug-09 18:09:52 dt = 52.1 55,000 km Earth to Scale

Solar Cycles

The Sun goes through activity cycles

Photon Effects

- Increased light from Sun (especially UV and X-Rays) means:
 - Heating of the upper atmosphere
 - Temperatures at 200 km can range from 500 to 1500 K
 - Results in expansion of atmosphere
 - Density at a particular altitude can change by an order of magnitude
 - Ionization of the upper atmosphere
 - The ionosphere exists because of solar EUV
 - Large day/night changes and solar activity changes
 - Dissociation of molecules
 - Changes the chemistry and constituents of atmosphere

Irradiance Spectrum and Variability

How Does all this Affect the Earth?

- Sunlight in the ultraviolet and X-rays is absorbed in the Earth's upper atmosphere
 - Heating to make the thermosphere
 - Ionizing to make the ionosphere
- Changes in the amount of UV from the Sun cause changes in the upper atmosphere

Earth's Atmosphere Composition & Density

Typical Atmospheric Temperature Profile

EUV, FUV, Soft X-rays absorption and ionization heating

Primarily IR radiating to space cooling,

Some FUV absorption heating

MUV Sunlight absorption by O₃ heating

Visible, NIR, NUV absortion of sunlight

by air and surface, surface heats from below

Ionosphere Reaction to Solar Variability

Ionosphere in Itself is Complex System

Ionospheric Electrodynamics

The Earth's Radiative Energy Balance

Particles and Fields Effects

- The Solar Wind, IMF, and CMEs all have impacts at Earth:
 - Magnetic fields from Sun interact with Earth's magnetic field and depending on orientation and strength can shake, rattle, and compress it.
 - Energetic particles can either penetrate the Earth's magnetic shield, or be diverted by it and get trapped in the radiation belts or magnetotail
 - Trapped particles can follow field lines down to impact the upper atmosphere at high latitudes and ionize it and make the aurora.
 - If the magnetic field is disrupted, particle effects can extend down to mid-latitudes.

Spirals for SW and CMEs

CME Impacting Earth

What About Other Planets?

- Space Weather Impacts will vary by:
 - Distance from Sun (photon and particle fluxes "spread out" with distance).
 - Intrinsic Magnetic Field (Jupiter has largest, Venus has only an induce one, Uranus has a complex quadrupole)
 - Atmosphere Size and Composition
 - Outer gas giants have huge atmospheres, Mercury almost none,...
 - Jupiter' is mostly hydrogen, Venus' and Mars' are mostly carbon dioxide
 - Conditions at planets have evolved over history of the solar system.

Distance from Sun Matters

Average Planetary Temperatures

DISTANCE FROM SUN (MILLIONS OF MILES)

Magnetic Fields of Other Planets

@ 2007 Thomson Higher Education

Aurora on the Outer Planets

Composition Changes Response

THE ATMOSPHERES OF THE SOLAR SYSTEM

Note: Planet sizes not to scale. Pressures for terrestrial planets are surface pressures. Mercury's atmosphere is not an atmosphere in the strict sense of the word, being a trillion times thinner than Earth's.

© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

"Exploring Mars' Climate History"

<u>Mars Now</u>

Mass: 0.11 M_{Earth}

Radius: 0.53 R_{Earth}

Rotational Period: 24.6 hours

Obliquity: 25.2° → Seasons!

Distance from Sun: 1.38 – 1.67 AU

 $(mean 1.52 AU) \rightarrow Eccentric!$

Orbital Period: 686 days

Surface Pressure: 6-10 mbar

(seasonal)

Surface Temperature: -195°F to 70°F

(mean: -80°F)

Ice Caps: Seasonal CO₂ over H₂O

Atmospheric Composition:

CO₂ 95.3%

N₂ 2.7%

Ar 1.6%

Mars 2 – 3.5 Billion Years Ago (we think)

Early Warm Wet Mars Theory More Atmosphere: 10 – 30 bar (CO₂)

More Water: ~1000 m (Earth has 3000 m worth)

Warmer temperatures (greenhouse)

Liquid Water:

Oldest flow channels formed 3.5-3.9 Gya

Other flow features 2.2-3.3 Gyall that C Evidence of northern ocean shoreline

What causes atmospheric escape?

Transport into Other Reservoirs ("Hiding") Sequestering in rocks, dissolving in oceans, storage in ice caps, life,

Jeans (Thermal) Escape

Atoms at top of atmosphere hot enough to reach escape velocity

Hydrodynamic Escape

Heavier atoms pulled along by flow of escaping lighter ones

Photo-Chemical (Non-Thermal Heating) Escape:
Charge exchange, Dissociative recombination, Impact dissociation,
Photo-dissociation, Ion-neutral reactions, Knock-on (heavy – light collisions)

Sputtering/Impact Escape
Impacts by small or large objects "blowing" off atmosphere

Solar Wind Pickup

SW carries ions and electrons away with it

Atmospheric Escape Driven by Space Weather

SWEA

EUV SWIA

Neutrals and Ions Plus Evolution

IUVS NGIMS

Ion-Related Properties and Processes

MAG

LPW

MAVEN instruments also Measure the the Response of the Atmosphere to those Inputs.

<u>Summary</u>

- The Sun is a primary source of energy for the planets (photons, particles, fields)
 - Space Weather!
- How a planet reacts depends on its particulars
 - atmosphere, magnetic field, distance, etc...
- How a planet reacts depends on its particulars
 - atmosphere, magnetic field, distance, etc...
 - The physics is the same, just what processes are important change