

Statistical Prediction of Solar Flares Using Line of Sight (LOS) Magnetogram Data

Jacinda Knoll

Mentors: K.D. Leka and Graham Barnes

Outline

- Importance of Solar Flare Prediction
- Data and Method Used
- Special Considerations
- Data Preparation
- Results
- Summary
- Areas for Further Research

Importance of Solar Flare Prediction

- Cannot "Now-Cast" as effects travel at speed of light
 - Cause damage at same time as detection
- Satellite disruption
- Astronaut Safety
- X-Ray radiation alters ionosphere
 - Loss of communication
 - Especially in short-wave bands

Flight over the North Pole

Data and Process

Data Being Used

- MDI Line of Sight (LOS) Magnetogram Data
- Observations from 1996-2004
- 204 x 204 pixel images centered on every active region observed
- Statistical Technique
 - Discriminant Analysis
 - Same technique being used for the IVM data

Special Considerations: LOS Data

Advantages

- Nearly 20,000 raw data points, with between 6,000 and 10,000 points with good data
- Large sample sizes needed for statistics (especially non-parametric)
- Disadvantages
 - Cannot calculate many of the parameters available for vector magnetogram data (e.g. J_z , H_c , ψ_{NL})
 - Data further from disc center less reliable due to observing angle correction factor

Example

Fairly good data...

...gets worse and worse.

Data-Checking

- Data had to be pared down before analysis
 - Removal of bad instrument data
 - 11586 good points out of 19295 total points: 60% of data
 - Created IDL keywords to specify different limits to place on the data
 - Distance from disk center to throw out magnetogram
 - Distance from disk center to zero out data
 - Allows greater control over the analysis

Results

- Predictive Power of DA varies year to year
 - Why?
- Quantification of Unreliability Further from Disk Center
 - Decrease of nearly 200% from Disk Center to 45 degrees out
- Potential Field Correction Does Not Improve Results
 - Although it is an improvement on observing angle correction

Variation with Year

One Hypothesis

- More magnetograms give better results
- Weak trend to support this as more data seems to give a higher skill score

Not the only possible explanation

Variation with Year

- First hypothesis called into question by "All Data" anomaly
- Weak possible trend not supported

Alternative Explanation

- Predictive power somehow tied to solar cycle
- Need more data to confirm

Decrease in Skill Score with Distance from Disk Center

31 July 2008

REU LASP 2008 NWRA/CoRA

Differences in Data

Includes data within 45° of disk center

Includes data within 60° of disk center

Who Cares?

- Researchers want large datasets
 - Often try to stretch the limits with LOS data
- Many say up to 60 degrees is acceptable using observing angle correction
 - Definitely not the case
 - Even 45 degrees is questionable

Potential Field Correction

- "Mu Correction" not an accurate measure of magnetic field on the sun
- Potential field correction method models active regions as potential fields instead of assuming all magnetic field is perpendicular
- Approximation produced similar results to the mu correction

Mu Correction vs. Potential Field

 In some cases, mu does better, in some cases, potential field does better (black crosses are mu, blue stars are PF)

Tags

REU LASP 2008 NWRA/CoRA

Not the Final Word

 Consistently greater difference between the potential field correction and observing angle correction further from disk center

Comparison with Peer Parameters

- R Parameter posited by Schrijver in 2007 paper
 - Locations of strong opposite-polarity magnetic fields adjacent to each other
 - Declared as proxy for photospheric electrical currents
- Uses Data Set from 1999 2006
- Implemented in Code, but still working out bugs
 Unable to compare results

Summary of my Summer

- Analysis Code Edited to Allow User to Choose Data Limits
- Discovered annual variations in predictive power
- Quantitatively confirmed unreliability of data far from disk center
- Investigated difference between observing angle correction and potential field correction

Future Research Possibilities

- Add more data to flush out reason behind annual variations
- See how far potential field correction can be extended beyond observing angle correction
- Fix code for Schrijver's R parameter and investigate differences in results
- Compare four-year results for similar parameters with IVM data
- Analyze differences in results between parametric and non-parametric DA

- LOS ideal for NPDA because of large dataset