Identifying Emission Lines in the Solar Extreme Ultraviolet (EUV) Irradiance Spectrum

Rachael L. Tomasino Advisors: Dr. Frank Eparvier and Rachel Hock

University of Colorado, Boulder

Laboratory for Atmospheric and Space Physics

August 4, 2010

Brief Background

Definition

Ultraviolet light is the portion in the electromagnetic spectrum which falls between X-Ray and Visible ranging between 10 nm - 400 nm. The Extreme Ultraviolet ranges between 10 nm - 120 nm.

Definition

Spectral Irradiance is the absolute measure of the total amount of sunlight incident on a unit area at a specific distance from the sun per wavelength. Units: $\frac{W}{m^2 \cdot nm}$

Brief Background

Definition

Ultraviolet light is the portion in the electromagnetic spectrum which falls between X-Ray and Visible ranging between 10 nm - 400 nm. The Extreme Ultraviolet ranges between 10 nm - 120 nm.

Definition

Spectral Irradiance is the absolute measure of the total amount of sunlight incident on a unit area at a specific distance from the sun per wavelength. Units: $\frac{W}{m^2 \cdot mm}$

Brief Background

Definition

Ultraviolet light is the portion in the electromagnetic spectrum which falls between X-Ray and Visible ranging between 10 nm - 400 nm. The Extreme Ultraviolet ranges between 10 nm - 120 nm.

Definition

Spectral Irradiance is the absolute measure of the total amount of sunlight incident on a unit area at a specific distance from the sun per wavelength. Units: $\frac{W}{m^2 \cdot nm}$

EUV at Earth

Space Weather Effects

• Solar EUV is completely absorbed in the Earth's upper atmosphere.

Creates ionosphere, heats thermosphere, and initiates photochemistry.

 Variability in solar EUV causes variability in: Amount and height of ionization. Temperature and density distribution of atmosphere. Composition of upper atmosphere.

What does it effect?

- Satellite Tracking, Satellite operations
- Navigation, GPS location
- Communication: Ground-Space and Ground-Ground

EUV at Earth

Space Weather Effects

• Solar EUV is completely absorbed in the Earth's upper atmosphere.

Creates ionosphere, heats thermosphere, and initiates photochemistry.

 Variability in solar EUV causes variability in: Amount and height of ionization. Temperature and density distribution of atmosphere. Composition of upper atmosphere.

What does it effect?

- Satellite Tracking, Satellite operations
- Navigation, GPS location
- Communication: Ground-Space and Ground-Ground

EUV at Earth

Space Weather Effects

• Solar EUV is completely absorbed in the Earth's upper atmosphere.

Creates ionosphere, heats thermosphere, and initiates photochemistry.

 Variability in solar EUV causes variability in: Amount and height of ionization. Temperature and density distribution of atmosphere. Composition of upper atmosphere.

What does it effect?

- Satellite Tracking, Satellite operations
- Navigation, GPS location
- Communication: Ground-Space and Ground-Ground

(日)

Space Weather Effects

• Solar EUV is completely absorbed in the Earth's upper atmosphere.

Creates ionosphere, heats thermosphere, and initiates photochemistry.

- Variability in solar EUV causes variability in: Amount and height of ionization.
 - Temperature and density distribution of atmosphere.

Composition of upper atmosphere.

What does it effect?

- Satellite Tracking, Satellite operations
- Navigation, GPS location
- Communication: Ground-Space and Ground-Ground

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Motivation

Primary Objectives

- (1) Specify the solar EUV spectral irradiance and its variability on multiple time scales.
- (2) Advance current understanding of how and why the solar EUV spectral irradiance varies.
- (3) Improve the capability to predict the EUV spectral irradiance variability.

(4) Understand the response of the geospace environment to variations in the solar EUV spectral irradiance and the impact on human endeavors.

Primary Objectives

- (1) Specify the solar EUV spectral irradiance and its variability on multiple time scales.
- (2) Advance current understanding of how and why the solar EUV spectral irradiance varies.
- (3) Improve the capability to predict the EUV spectral irradiance variability.

(4) Understand the response of the geospace environment to variations in the solar EUV spectral irradiance and the impact on human endeavors.

Primary Objectives

- (1) Specify the solar EUV spectral irradiance and its variability on multiple time scales.
- (2) Advance current understanding of how and why the solar EUV spectral irradiance varies.
- (3) Improve the capability to predict the EUV spectral irradiance variability.
- (4) Understand the response of the geospace environment to variations in the solar EUV spectral irradiance and the impact on human endeavors.

Primary Objectives

(1) Specify the solar EUV spectral irradiance and its variability on multiple time scales.

(2) Advance current understanding of how and why the solar EUV spectral irradiance varies.

(3) Improve the capability to predict the EUV spectral irradiance variability.

(4) Understand the response of the geospace environment to variations in the solar EUV spectral irradiance and the impact on human endeavors.

Process

- Identified solar emission lines between 17 nm and 37 nm using EVE data, IDL and CHIANTI.
- Extracted time series of individual ion emission lines.
- Compared and contrasted within species over a slow variation.

Process

- Identified solar emission lines between 17 nm and 37 nm using EVE data, IDL and CHIANTI.
- Extracted time series of individual ion emission lines.
- Compared and contrasted within species over a slow variation.

Process

- Identified solar emission lines between 17 nm and 37 nm using EVE data, IDL and CHIANTI.
- Extracted time series of individual ion emission lines.
- Compared and contrasted within species over a slow variation.

Solar Dynamics Observatory: Launched February 11, 2010 Helioseismic and Magnetic Imager (HMI) Atmospheric Imaging Assembly (AIA)

Extreme Ultraviolet Variability Experiment (EVE) EUV SpectroPhotometer (ESP) Multiple EUV Grating Spectrograph (MEGS)

Solar Dynamics Observatory: Launched February 11, 2010 Helioseismic and Magnetic Imager (HMI) Atmospheric Imaging Assembly (AIA)

Extreme Ultraviolet Variability Experiment (EVE EUV SpectroPhotometer (ESP) Multiple EUV Grating Spectrograph (MEGS)

Solar Dynamics Observatory: Launched February 11, 2010 Helioseismic and Magnetic Imager (HMI) Atmospheric Imaging Assembly (AIA)

Extreme Ultraviolet Variability Experiment (EVE EUV SpectroPhotometer (ESP) Multiple EUV Grating Spectrograph (MEGS)

Solar Dynamics Observatory: Launched February 11, 2010 Helioseismic and Magnetic Imager (HMI) Atmospheric Imaging Assembly (AIA)

Extreme Ultraviolet Variability Experiment (EVE)

EUV SpectroPhotometer (ESP) Multiple EUV Grating Spectrograph (MEGS)

Solar Dynamics Observatory: Launched February 11, 2010 Helioseismic and Magnetic Imager (HMI) Atmospheric Imaging Assembly (AIA)

Extreme Ultraviolet Variability Experiment (EVE) EUV SpectroPhotometer (ESP) Multiple EUV Grating Spectrograph (MEGS)

Solar Dynamics Observatory: Launched February 11, 2010 Helioseismic and Magnetic Imager (HMI) Atmospheric Imaging Assembly (AIA)

Extreme Ultraviolet Variability Experiment (EVE) EUV SpectroPhotometer (ESP) Multiple EUV Grating Spectrograph (MEGS)

Solar Dynamics Observatory: Launched February 11, 2010 Helioseismic and Magnetic Imager (HMI) Atmospheric Imaging Assembly (AIA)

Extreme Ultraviolet Variability Experiment (EVE) EUV SpectroPhotometer (ESP) Multiple EUV Grating Spectrograph (MEGS)

MEGS-A Data Product

Level	Description	Components	Wavelength Coverage	Wavelength Sampling	Temporal Sampling	Time Span of Data File	Daily size (GB)	Latency of Availability
LOC	Space Weather Product:	ESP bands + quads (flare)	0.1-7, 18.2, 25.6, 30.4, 36.6 nm	broadband ~4- nm	1-min	Latest 15-min and current 1-	0.004	
	Crudely calibrated irradiances" (from Ka-Band data)	MEGS-P	121-122 nm	1-nm				<15 min
		MEGS-A, B	5-105 nm	1-nm	1-min	day (growing	0.005	
		MEGS-A, B, proxies	Select lines and bands**	d Varies by band 1-min		me)	0.01	
	Fastest Space Weather Product: Crudely calibrated	ESP bands + quads (flares)	0.1-7, 18.2, 25.6, 30.4, 36.6 nm	broadband ~4- nm		Latest 15-min		
LOCS	irradiances" with least latency	MEGS-P	121-122 nm	1-nm	1-min day (growing	0.005	< 1 min	
	(from S-Band)	XRS & SEM model	Proxies	Varies by band		file)		
LI	Photometer Data: fully calibrated and corrected photometer irradiances	ESP	0.1-7, 18.2, 25.6, 30.4, 36.6 nm	~4-nm	1/4-sec		0.03	
		SAM	0.1-7 nm***	0.1-1-nm	1- & 5-min	1-hour	varies	1 Day
		MEGS-P	121-122 nm	~1-nm	1/4-sec		0.006	1
L2	Spectra: fully calibrated and corrected spectral irradiances at instrument resolution	MEGS-A, B	5-105 nm	0.02 nm	10-sec	1-hour	1.2	1-2 Day
12	Lines & Broadband irradiances: fully calibrated and corrected photometer irradiances and extracted spectral lines and bands	MEGS-A, B, P, ESP	select lines & bands	Varies by band	10-sec	1-hour	0.01	1-2 Day
L3	Merged Spectra: fully calibrated, corrected, and merged spectral irradiances	ESP, SAM, MEGS-A, MEGS-B, MEGS-P	0.1-105 nm	0.02, 0.1 & 1 nm	1-day	1-day	<0.001	1-2 Day

*All products are corrected to 1-AU except LOC and LOCS.
** Lines spanning Log T = 3.8-7.1, plus AIA and ESP bands.

*** SAM is a research project, L1A will have 4 element event list: time, location (x,y), and energy

EVE Spectrum

May 5, 2010

Definition

Interactive Data Language (IDL) is a programming language used for data analysis. It is highly used in the astronomical community due to its ability to handle large arrays of data.

EVE Spectrum

May 5, 2010

Definition

Interactive Data Language (IDL) is a programming language used for data analysis. It is highly used in the astronomical community due to its ability to handle large arrays of data.

CHIANTI

Definition

Critically evaluated set of atomic data (energy levels, wavelengths, radiative transition probabilities and excitation data) for a large number of ions of astrophysical interest.

	CING INVESTIG	es celculute	m - click here for	a short HELP - De	end commonts to	chineli_help3h	alcyce arfanosy and		
Novelength (Å) Hile. (550.0000 Hise. (200.0000	Const. Date 3.00e+10 Ioniz. Fract	sty A	l ken ? - HELP n	UEOTHERMAL Y	- HELP DEM)	DEM	Photosoc.: NO	Units: ERG5 Protano: VE3 Colculus internation SoverRenation Quit	
			Calculate and plet	n spectrum - clict	k here for a short	HELP -			
λ[raw] Mix. [388.000000	8in HELP 0.100	PVHM HELP B.500	Costinuant HELP I No O'Yes	Allines? HELP 10 (1995	Abantiences HELP Som photospin	Min. Alkand. HELP 3.25e-11	Eff. Anne: HO HEUP	RESTORE spectrum Units: ERGS Calculate and pixt	
			10						
Labelsy - HELF - HE _ Yes & es _ [0]	ю НЕЦР — 30 (100е-00 — Ус () 50 A00000 (1.00e-00	200 20000 (0.000-00	Zown Grait Uncoun Ha	he PS Hite Save 1 Histopy Save 1	line details (Juli	er) Un (Leg ci) Start spot		

CHIANTI

Definition

Critically evaluated set of atomic data (energy levels, wavelengths, radiative transition probabilities and excitation data) for a large number of ions of astrophysical interest.

Making a Synthetic Spectrum

Assumptions

- Constant Density = $1.00e^{10} cm^{-3}$
- Ionization Fraction = CHIANTI
- Differential Emission Measure = quiet_sun
- Elemental Abundance = sun_photospheric
- Minimum Abundance = $3.98e^{-8}$
- Minimum Intensity = $1.26e^{-11} \frac{erg}{cm^2 \cdot sr \cdot s}$

Problems

- Making assumptions.
- CHIANTI is not complete.

Not all atomic transition probabilities are known.

Making a Synthetic Spectrum

Assumptions

- Constant Density = $1.00e^{10} cm^{-3}$
- Ionization Fraction = CHIANTI
- Differential Emission Measure = quiet_sun
- Elemental Abundance = sun_photospheric
- Minimum Abundance = $3.98e^{-8}$
- Minimum Intensity = $1.26e^{-11} \frac{erg}{cm^2 \cdot sr \cdot s}$

Problems

- Making assumptions.
- CHIANTI is not complete.

Not all atomic transition probabilities are known.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Table: CHIANTI line list

Wavelength(Å)	Intensity	Ion	Tmax	Transition
170.7530	$2.87e^{-10}$	Mg V	5.7	2s 2p5 3P0 - 2s2 2p3 (2D) 3d 3D2
170.7753	$8.33e^{-07}$	S VIII	6.1	2s2 2p4 (3P) 3p 4P3/2 - 2s2 2p4 (1D) 4d 2P3/2
170.8420	$1.05e^{-02}$	Fe XI	6.1	3s2 3p4 1D2 - 3s2 3p3 (2P) 3d 1P1
170.9989	$4.74e^{-10}$	Fe XVIII	6.6	2s2 2p4 (3P) 3s 4P3/2 - 2s2 2p4 (3P) 3d 4F5/2
171.0080	$2.12e^{-07}$	Ne VI	5.7	2s 2p2 2P1/2 - 2s 2p (3P) 3s 4P3/2
171.0280	$7.81e^{-07}$	Ne VI	5.7	2s 2p2 2P3/2 - 2s 2p (3P) 3s 4P5/2
171.0570	$1.44e^{-08}$	Ti XVII	6.6	2s 2p3 3P2 - 2p4 3P2
171.0730	$2.05e^{+02}$	Fe IX	5.9	3s2 3p6 1S0 - 3s2 3p5 3d 1P1
171.0956	$1.83e^{-06}$	Ar X	6.2	2s2 2p4 (3P) 3s 4P3/2 - 2s 2p5 (3P) 3s 2P1/2
171.1480	$9.56e^{-08}$	Ne VI	5.7	2s 2p2 2P1/2 - 2s 2p (3P) 3s 4P1/2
171.1540	$4.97e^{-08}$	Ar IX	6.1	2s2 2p5 3p 1D2 - 2s2 2p5 4p 3P1
171.1794	$4.27e^{-05}$	Ar X	6.2	2s2 2p4 (3P) 3s 4P5/2 - 2s 2p5 (3P) 3s 2P3/2
171.2420	$1.59e^{-07}$	Ar IX	6.1	2s2 2p5 3p 1D2 - 2s2 2p5 4p 1D2
171.2500	$4.22e^{-08}$	Ne VI	5.7	2s 2p2 2P3/2 - 2s 2p (3P) 3s 4P3/2
171.2620	$2.46e^{-03}$	Fe X	6.1	3s 3p5 (3P) 3d 2F7/2 - 3s2 3p4 (1D) 4d 2D5/2
171.3703	$1.36e^{+00}$	Ni XIV	6.3	3s2 3p3 4S3/2 - 3s2 3p2 (3P) 3d 4P5/2

Table: CHIANTI line list

Wavelength(Å)	Intensity	Ion	Tmax	Transition
170.7530	$2.87e^{-10}$	Mg V	5.7	2s 2p5 3P0 - 2s2 2p3 (2D) 3d 3D2
170.7753	$8.33e^{-07}$	S VIII	6.1	2s2 2p4 (3P) 3p 4P3/2 - 2s2 2p4 (1D) 4d 2P3/2
170.8420	$1.05e^{-02}$	Fe XI	6.1	3s2 3p4 1D2 - 3s2 3p3 (2P) 3d 1P1
170.9989	$4.74e^{-10}$	Fe XVIII	6.6	2s2 2p4 (3P) 3s 4P3/2 - 2s2 2p4 (3P) 3d 4F5/2
171.0080	$2.12e^{-07}$	Ne VI	5.7	2s 2p2 2P1/2 - 2s 2p (3P) 3s 4P3/2
171.0280	$7.81e^{-07}$	Ne VI	5.7	2s 2p2 2P3/2 - 2s 2p (3P) 3s 4P5/2
171.0570	$1.44e^{-08}$	Ti XVII	6.6	2s 2p3 3P2 - 2p4 3P2
171.0730	$2.05e^{+02}$	Fe IX	5.9	3s2 3p6 1S0 - 3s2 3p5 3d 1P1
171.0956	$1.83e^{-06}$	Ar X	6.2	2s2 2p4 (3P) 3s 4P3/2 - 2s 2p5 (3P) 3s 2P1/2
171.1480	$9.56e^{-08}$	Ne VI	5.7	2s 2p2 2P1/2 - 2s 2p (3P) 3s 4P1/2
171.1540	$4.97e^{-08}$	Ar IX	6.1	2s2 2p5 3p 1D2 - 2s2 2p5 4p 3P1
171.1794	$4.27e^{-05}$	Ar X	6.2	2s2 2p4 (3P) 3s 4P5/2 - 2s 2p5 (3P) 3s 2P3/2
171.2420	$1.59e^{-07}$	Ar IX	6.1	2s2 2p5 3p 1D2 - 2s2 2p5 4p 1D2
171.2500	$4.22e^{-08}$	Ne VI	5.7	2s 2p2 2P3/2 - 2s 2p (3P) 3s 4P3/2
171.2620	$2.46e^{-03}$	Fe X	6.1	3s 3p5 (3P) 3d 2F7/2 - 3s2 3p4 (1D) 4d 2D5/2
171.3703	$1.36e^{+00}$	Ni XIV	6.3	3s2 3p3 4S3/2 - 3s2 3p2 (3P) 3d 4P5/2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

Time series of 17.1 nm Fe IX

▲ロ▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Wavelengths(Å)	Ratio	Stand.Dev.	Percent	Pearson
171./171.	1.0000	0.000000	0.000000	1.000000
171./188.	2.0168	0.069886	0.034652	0.906477
171./190.	8.2293	0.224910	0.027330	0.951956
171./191.	20.3197	0.874443	0.043034	0.895725
171./197.	21.1571	0.782183	0.036970	0.932942
171./217.	8.3959	0.298466	0.035549	0.949570
171./219.	12.7881	1.028338	0.080414	0.902604
171./230.	11.4787	0.303932	0.026478	0.937031
171./241.	6.8751	0.186593	0.027140	0.959386
171./244.	12.6288	0.365976	0.028979	0.966897
171./341.	22.1180	0.998897	0.045162	0.852954
188./219.	6.3364	0.375403	0.059245	0.967875
188./241.	3.4112	0.090832	0.026628	0.951427
188./244.	6.2651	0.156928	0.025048	0.966654
191./341.	1.0892	0.037211	0.034165	0.926662
230./197.	1.8432	0.050085	0.027173	0.974626
241./190.	1.1971	0.021267	0.017766	0.978145
241./244.	1.8369	0.023265	0.012665	0.992566

Table: Fe IX emission lines between 17 nm and 37 nm

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▶ ▲□

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへで

◆ロ▶◆母▶◆臣▶◆臣▶ 臣 の久(で)

Squiggly Line Plots

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへで

Ions Analyzed

- Fe IX, Fe X, Fe XI, Fe XII, Fe XIII
- He II
- O IV, O V, O VI
- Mg VI, Mg VII

Magnesium

- Total of 3 usable lines.
- For both Mg ions, there wasn't sufficient data to suggest non-blends.
- All three Mg VII lines are all composed of different elements and ions.

Ions Analyzed

- Fe IX, Fe X, Fe XI, Fe XII, Fe XIII
- He II
- O IV, O V, O VI
- Mg VI, Mg VII

Magnesium

- Total of 3 usable lines.
- For both Mg ions, there wasn't sufficient data to suggest non-blends.
- All three Mg VII lines are all composed of different elements and ions.

Oxygen

- Total of 7 usable lines.
- Insufficient data to analyze O VI
- 24.8 nm O V line is a non-blend
- 19.3 nm and 22.0 nm O V lines are blends and of different ions.
- 23.9 nm and 26.7 nm O IV lines are blends

Helium

- Total of 4 usable lines.
- 24.3 nm and 25.6 nm He II lines are blends.
- 30.4 nm and 23.7 nm He II lines are non-blends.

Oxygen

- Total of 7 usable lines.
- Insufficient data to analyze O VI
- 24.8 nm O V line is a non-blend
- 19.3 nm and 22.0 nm O V lines are blends and of different ions.
- 23.9 nm and 26.7 nm O IV lines are blends

Helium

- Total of 4 usable lines.
- 24.3 nm and 25.6 nm He II lines are blends.
- 30.4 nm and 23.7 nm He II lines are non-blends.

Conclusions

Iron Thirteen

- Total of 10 usable lines.
- 20.0 nm, 20.2 nm 21.4 nm lines are non-blends.
- 19.7 nm, 20.4 nm, 21.0 nm, 24.1 nm, 24.6 nm, 25.2 nm, 36.0 nm and 36.8 nm are blends.

Iron Twelve

- Total of 15 usable lines.
- 19.4 nm and 19.5 nm lines are non-blends.
- Not sure about 20.6 nm line.
- 18.9 nm, 19.1 nm, 19.3 nm, 19.7 nm, 20.4 nm, 21.9 nm, 23.2 nm, 24.1 nm, 24.9 nm, 29.1 nm, 35.2 nm and 36.4 nm lines are all blends.

Iron Thirteen

- Total of 10 usable lines.
- 20.0 nm, 20.2 nm 21.4 nm lines are non-blends.
- 19.7 nm, 20.4 nm, 21.0 nm, 24.1 nm, 24.6 nm, 25.2 nm, 36.0 nm and 36.8 nm are blends.

Iron Twelve

- Total of 15 usable lines.
- 19.4 nm and 19.5 nm lines are non-blends.
- Not sure about 20.6 nm line.
- 18.9 nm, 19.1 nm, 19.3 nm, 19.7 nm, 20.4 nm, 21.9 nm, 23.2 nm, 24.1 nm, 24.9 nm, 29.1 nm, 35.2 nm and 36.4 nm lines are all blends.

Iron Eleven

- Total of 9 usable lines.
- No non-blends
- 18.2 nm, 18.4 nm, 18.8 nm and 19.0 nm all vary the same which suggests they are made of the same blend of ions.

Iron Ten

- Total of 9 usable lines.
- 17.4 nm and 17.7 nm lines are non-blended.
- Not sure about 20.8 nm line.
- 18.0 nm, 18.5 nm, 19.0 nm, 22.0 nm, 22.7 nm, 25.7 nm lines are blends.

Iron Eleven

- Total of 9 usable lines.
- No non-blends
- 18.2 nm, 18.4 nm, 18.8 nm and 19.0 nm all vary the same which suggests they are made of the same blend of ions.

Iron Ten

- Total of 9 usable lines.
- 17.4 nm and 17.7 nm lines are non-blended.
- Not sure about 20.8 nm line.
- 18.0 nm, 18.5 nm, 19.0 nm, 22.0 nm, 22.7 nm, 25.7 nm lines are blends.

Flares

Comments

While the shorter EUV wavelengths are very active and interesting during a flare, preliminary analysis doesn't show any new usable lines between 17 and 37 nm.

- Analyze more ion species. Fe XIV, Fe XVI, Si IX, Si X, ...
- Look at other parts of the EUV.
- Further suggest blends and which elements make up the blend.
- Further look at flare vs non-flare (fast variation).

I would like to thank my mentors, Dr. Frank Eparvier and Rachel Hock, for all of their help and wealth of knowledge.

My work was supported by the National Science Foundation.

sun_photospheric elemental abundance: Grevesse N., Sauval A.J., 1998, Space Science Reviews, 85, 161

quiet_sun differential emission measure: Vernazza & Reeves, 1978, ApJSS, 37, 485