Exploring Solar Signals: A Bayesian Approach to Developing a Composite Mg II Index Record

Sara Swenson St. Olaf College, Northfield, MN

Odele Coddington, Martin Snow Laboratory for Atmospheric and Space Physics, Boulder, CO

Outline

- What is the Mg II Index?
- Bayesian Theorem and Likelihood Theory
- Wavelet Theory
 - Wavelets as a method to separate out physical signals within larger data sets
- Building a composite data set from the Bremen composite, SORCE SOLSTICE, and NOAA 16

What is the Magnesium (Mg) II Index? (And why should we care?)

- Solar activity can pose risks to global systems
- Changes in the Chromosphere important in the long term behavior of Earth's atmospheric climate
- Mg II index proxy for measuring variability of the Sun's chromosphere
- Measures the core-to-wing ratio in the solar ultraviolet irradiance spectrum
 - Absorption Wings Upper Photosphere
 - Emission Core Upper Chromosphere

A Composite Mg II Index

Various instruments have measured the Mg II Index

- However, different
 - Time periods
 - Platforms
 - Spectral Resolutions
 - Measurement Uncertainty
- Composite Index is necessary

Data Sets

The Bremen Composite

- GOME (Global Ozone Monitoring Experiment)
- SCIABACY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY)
- GOME 2
- SORCE SOLSTICE (SOlar Radiation and Climate Experiment, SOLar STellar Irradiance Comparison Experiment)

NOAA 16

Bayes' Theorem and Likelihood Theory

- If you don't have a model, can you make predictions about your data?
- Likelihood a model/ hypothesis given your information(data) and any prior assumptions
- Bayesian Probability:

$$p(\Theta | y) \propto p(\Theta) p(y | \Theta)$$

& Likelihood:

$$p(y | \Theta) = L(\Theta | y)$$

$$L(\Theta \mid y) = \prod f(y \mid \Theta)$$

Wavelet Theory: Establishing Statistical Independence

- Tool to examine individual signals within the data and determine statistical significance
- Composed of 'Mother' functions
- Similar to FFT (Fast Fourier Transform)

Irregular waves of short, limited duration

Wavelets cont.

Physical Signals

- 24.7-Day Sidereal Period
 - Time for equator to complete one full rotation
- 8 26.2-Day Synodic Period
 - Time for fixed feature on the sun to complete one full rotation
- ✤ Lifetime of active region on the Sun (~3 Months)
- 11-Year Solar Cycle
- 22-Year Magnetic Field Reversal Period

Signals within the Data

Signals within the Data

The Bremen Composite

NOAA 16

SORCE SOLSTICE

Averaged Signals \rightarrow Composite Index

Mg II Composite

Next Steps

- Apply the BPSS (Bayesian Positive Source Separation) technique to determine the maximally likely composite Mg II record
 - Future results can by compared to derived uncertainty analysis
- Substitution Using the BPSS technique will provide the 'best' Mg II index
- Section 2018 Explore signals not analyzed in this research
 - Solar Origin?
 - Instrumental Error?
 - Such as: time and temperature dependencies in calibration corrections

Conclusion

First Estimate of the Mg II Composite Index
Composite Mg II Index contained within the range

Compare and Conceptualize and further research
Uncertainty analysis of this research

Acknowledgements

My two amazing mentors: Odele Coddington and Marty Snow

University of Colorado REU Program
Especially, Erin Wood and Marty Snow

