

Propagation Delay Prediction of Interplanetary Shocks and Discontinuities Shane Witters Hicks^{1,3} and Michele Cash^{2,3}

¹Principia College, Elsah, IL, USA

²Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO ³National Oceanic and Atmospheric Administration (NOAA), Space Weather Prediction Center (SWPC), Boulder, CO

Introduction

Methods

The use of a flat-plane propagation method (referred to as convection delay) to predict arrival times of CMEs and other solar-wind discontinuities results in significant error. Consequently, finding a method to accurately calculate the normal tilt of shock phase fronts, and thus improving on propagation-delay predictions, has become a topic of interest amongst spaceweather researchers. A modified minimum variance analysis method, a cross product method, and a method that combines both of these techniques (MVAB-0, CP, and MVCP, respectively), have been suggested for use in calculating such a normal. Using ACE data from 104 sudden-impulse generating shocks, we present findings from our attempts to discover correlations between three shock parameters and delay error. After a coarse optimization of parameters, we also display results from an in-depth analysis on the effectiveness of the three techniques compared to convection delay. Synthesizing insights gained from our work, we are able to propose a shock propagation-delay prediction method to be used in real-time to aid forecasters at NOAA SWPC.

1998-2013 data from Advanced Composition Explorer (ACE)

Shock detection algorithm from *Cash* Flat plane method Tilted plane methods *et al.* [2014] **Convection delay MVAB-0 + CP = MVCP**

Data and Analysis

Attempts to find a correlation between parameters and delay error – Non-optimized analysis

		FREQUENCY OF E (%)	RROR IN PREDICT	ED ARRIVAL TIME			The non-optimized analysis results suggest that a tilted-	Parameter	Optimized Values for MVCP/MVAB-0
Hypothesis	SHOCK PARAMETER	0-5 min error	6-11 min error	12-31 min error	Mean error	Data Summary	phase-planes method cannot	Data Cadence	1 minute
When ACE is far fi	om ACE >40 R _E &					Convection delay	predict the arrival time of a shock as accurately as a	Limiting Angle	60 2
observes a shock highly tilted away	that is from FROM S-E LINE					outperforms MVCP for highly-	method that assumes a flat phase front plane. We	Number of Points in CP Average	
the S-E line, a tilte phase-planes met	d- CD hod MVCP	73 55	18 27	9 18	4 7	tilted/far events.	recognize this as simply the	Number of Points in MV	7
seen in convection delay.							outcome of one parameter permutation and	Calculation	
A strong shock (N	ach # MACH #					Convection delay	acknowledge the extensive	Agreement Angle	22
strength) will be l	LOWER 50% CD	76	16 26	8.0	4	outperforms	research conducted which	Minimum Eigenvalue Ratio	27
it simply blasts th	rough UPPER 50% CD	74	17	9.4	4	strong and weak	phase-planes methods.	Minimum B Change Angle	1
the solar wind, so will travel with a	UPPER 50% MVCP	58	32	9.4	5	shocks.	Therefore a coarse	Step Size	2
relatively flat pha front plane. Thus,	a						parameter optimization was	Number of Points in Shock	1
tilted-phase-plane method will bette	r						conducted.	Average	
predict weaker, m tilted, shocks.	ore							For Invalid Tilt Angles	Assume flat plane
Percent improvement over convection delay, pre- and post-optimization									
Old SI list							Conclusions		
Imp Method Para	Improvement w/ Optimized Improvement w/ Original Parameters (%) Improvement w/ Optimized Improvement w/ Optimized Original Parameters (%)				provement w/ iginal Parameters (%)	Data from the non-optimized results suggests that a tilted-phase-planes method, without optimization, accepts many tilts that are not accurate.			
MVCP	-0.4 ± 1.5		-5 ± 2 MVCP		4 ± 2	-3.5 ± 1.5	We therefore conclude that the op	timization process not only imp	proves the accuracy of normal
MVAB-0	0.8 ± 0.4		-9 ± 3 MVAB-0		3.1 ± 1.3	-7 ± 3	calculations but weeds out those t	ilts which would generate inacc	urate delay times.
Cross Product-10 ± 4-9 ± 3 Cross Product-8 ± 3-7 ± 3						Synthesizing our results, we recommend either the MVAB-0 method or the MVCP method for use with shock event forecasting because, when optimized, they both perform with more accuracy than convection delay within the error bars. An error bar analysis also reveals that neither the MVAB-0 nor the MVCP method is more accurate than the other. Although the skill score for the optimized MVCP method using the old SI list can be negative (less accurate than convection delay) within the error bars, we do not believe this is conclusive evidence to rule out this method as a			
56% of MVAR-0 tilts are valid without optimization									
25% of M/AD 0 tilts are valid with antimization									
25% OF WINAD-U LITES are valid with optimization of w									

Future Research

Knetter et al. [2004] and *Horbury et al.* [2001] show that the cross product method does quite well as a normal-calculation technique. It may be interesting to investigate the optimization of input parameters required for the cross product calculation with greater thoroughness than is conducted in this study, in an attempt to re-create or enhance the effects seen by these two research groups. It also may be worthwhile to repeat this investigation in an attempt to better understand which features of shocks cause inaccurate delay times. Our non-optimized analysis suggests that shocks may have structures more complex than simply flat or simply tilted, which may be a partial factor in the calculations of invalid tilts.

Acknowledgements

Cash et al., (2014), Charaterizing interplanetary shocks for development and optimization of an automated solar wind shock detection algorithm, J. *Geophys. Res. Space Physics*, **119**, 4210-4222, doi:10.1002/2014JA019800 Atmospheric and Space Physics for organizing and making this research experience Knetter et al. (2004), Four-point, discontinuity observations using Cluster magnetic field data: A statistical survey, J. Geophys. Res., 109, A06102, doi:10.1029/2003JA010099. possible. We would also like to thank NOAA-SWPC and the NSF for supporting Horbury et al. (2001), Prediction of Earth arrival times of interplanetary southward magnetic field turnings, J. Geophys. Res., 106(A12), 30001–30009, doi:10.1029/2000JA002232. Weimer and King (2008), Improved calculations of interplanetary magnetic field phase front angles and propagation time delays, J. Geophys. Res., 113, A01105, doi. 10,1029/2007JA012452.

viable choice; it is still shown to perform significantly higher than convection delay (improvements

Shane Witters Hicks Shane.Witters-Hicks@noaa.gov

Michele Cash Michele.Cash@noaa.gov

ranging from 2%-6%) using the new SI list.

This research was supported by NSF REU grant 11507020 to the University of

We would like to thank the University of Colorado-Boulder Laboratory for

research at the undergraduate level.