Turbulent motions within the
solar convection zone play a
central role in the generation
and maintenance of the Sun's
magnetic field. This magnetic
field reverses its polarity every
11 years and serves as the
source of powerful space
weather events, such as solar
flares and coronal mass
ejections, which can directly
affect artificial satellites and
power grids. The structure and inductive properties are linked to the
amplitude (i.e speed) of convective motion. Using the NASA Pleiades
supercomputer, a 3D fluids code simulates these processes by evolving
the Navier-Stokes equations in time and under an anelastic constraint.
This code imitates the fluxes describing heat transport in the sun. The
theories behind the radiative, entropy, and kinetic energy flux have been
well established, yet past models simulating the conductive and
granulation fluxes have not produced results matching observations
from the sun. New models implement a revised granulation flux at the
sun’s surface. Results comparing the behavior of convection with and
without the new model will be presented, as well as the behavior of
convection with a varying prandtl number.

Motivation

 Convection is a fundamental process that occurs
often and regularly in everyday life

« The convection in the sun contributes to the
generation of magnetic fields, which cause space
weather events such as CMEs and Solar Flares

Recent observational and modeling results suggest
that an overestimation of the convective amplitude

Background

Previous models of surface convection use the

following conservation of energy equation:
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Ez_v'(Frad'l'Fe'l'Fk"l'Fcond)

. ds
In this model, F.,,,q X —K — where

k = thermal dif fusivity , (Keu~107, Kpyoge;~1012)

As k decreases, v, Increases, and no
longer matches observations of the
sun

A new model replaces F,ypq With F, + F ong as flux
representing the small scale surface convection on the
sun (where F;, = granulation flux)

— : ds
Advantage: F, is not proportional to — K——, SO wWe
can decrease k without raising v,
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Convective Amplitudes

Methods

 Using the NASA's Pleiades
supercomputer, we solve the Navier
Stokes equations in time under an
anelastic constraint to model the small

scale convection (F,,,4 for old model,
F, + Feong for new model)

 Navier Stokes equations:

. Based on the conservation of mass,
momentum, and energy equations

e Anelastic constraint:
¢« V-(pv)=0

 The output is used to analyze the

convective amplitude and structure and

the heat transport by convection

Initial Results
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Prandtl Number Tests

e Mean

« To understand the decrease in KE
we look at the Prandtl number

 The Prandtl number equals the ratio

between viscous and thermal
diffusivity

v (viscous)

P =

K (thermal)

« \We run tests to see the differences

between a changing and constant P.

 For changing values, v Is constant as

k changes

 [For constant values, v = k
(so B. =1)

Results

+ Without F, + With F,
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» Spectra graphs for both models
show similar trends

* Without £ * With £,
kappa = 8el2 . g kappa = 8el2

* 1., and convective structure
show similar behavior with
decreasing k In both models
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Conclusion

* The structure and amplitude of deep
convection Is similar for both models
of surface convection considered
(conduction and fixed-flux)

» Suggests that deep convection
IS not very sensitive to the
detalls of the surface convection

* The Prandtl number makes a big
difference on the convective
amplitude!
 As k Is decreased, holding P.
constant, v,,,. Increases

 As kIs decreased, holding v
constant (increasing P.), v,
decreases! (surprise!)

 The second situation (increasing
P.) Is very promising because
V-ms 1N CUIrent convection
simulations might be too big and
the real k of the Sun is very
small

Next Steps

Testing the following Hypothesis:

 T'inthe middle of the
convection zone, increases
as you decrease K.

+ Where F, & VT’ = Fg

* If true, explains decreasing v,
with increasing Prandtl number
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