Penetrating electric study using ICON observations & MAGE simulations

Qian Wu, Wenbin Wang, Dong Lin, Liying Qian (NCAR)
Yongliang Zhang (APL)

NSF NCAR/HAO GIGI Workshop Boulder Co Sep 2024

Overview

- Equatorial ionosphere can feel direct penetrating electric field and slow disturbed electric field.
- ❖ It will be a great interest to examine the penetrating electric field with/without disturbed electric field.
- ❖ The recently developed magnetospheric and ionospheric coupling model GTR (GAMERA-TIEGCM-RCM) is well suited for study penetrating electric field. GTR is part of the Multiscale Atmosphere-Geospace Environment (MAGE) modeling effort. We will simulate the penetrating electric field effect.
- ❖ Additionally, we will use the observations from ICON to validate the simulation results. The ion drift and neutral winds are particularly important for understanding the equatorial dynamo.

MAGE (Multiscale Atmosphere-Geospace Environment)

July 7-8 2022 Storm Event

Hemispheric Potential Map 12-13 UT July 7, 2022

Equatorial Vertical Ion Drift

ICON Zonal Wind and Vertical Ion Drift July 7, 2022

Lon (deg)

ODSERVATORT

Lon (deg)

12-13 UT

July 8 2022 IMF Conditions

Hemispheric Potential Pattern 7-8 UT July 8 2022

Pressure bulge reduced dawn/dusk potential difference

Equatorial Vertical Ion Drift

ICON Zonal Wind and Vertical Ion Drift July 8, 2022

NCAR LICAR

7-8 UT

Quiet and Disturbed Electric Field ICON Observation vs MAGE Simulation

Summary

- The July 7-8, 2022 geomagnetic storm event provides an opportunity to examine the penetrating and disturbed electric fields.
- Electric field without disturbance is more uniform on day and nightside
- Disturbed electric field introduces structures on the nightside.
- Penetrating electric field reduces the nightside disturbed electric field.
- MAGE simulation of the disturbed electric field and zonal winds have a good agreement with ICON observations.

WindCube

WindCube Coverage

LT vs Lat

Plan to have a sun synch dawn/dusk orbit

Lon vs Lat

