SOLID – a European Project towards a Comprehensive Solar Irradiance Data Exploitation

Margit Haberreiter¹ [margit.haberreiter@pmodwrc.ch], Maria Dasi², Veronique Delouille³, Giulio Del Zanna⁴, Thierry Dudok de Wit⁵, Ilaria Ermolli⁶, Matthieu Kretzschmar³, Natalie Krivova², Helen Mason⁴, Benjamin Mampeay³, Rami Qahwaji⁷, Micha Schoell³; Werner Schmutz¹, Sami Solanki², Gérard Thuillier⁸, Klairie Tourpali⁹, Yvonne Unruh¹⁰, Cis Verbeeck³, Mark Weber¹¹, and Tom Woods¹²

³ Royal Observatory of Brussels, Belgium

⁴ Cambridge of University, United Kingdom

⁶ INAF Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy

⁷ University of Bradford, United Kingdom

¹¹ Universität Bremen, Germany

Variations of solar irradiance are the most important natural factor in the terrestrial climate and as such, the time dependent spectral solar irradiance is a crucial input to any climate modelling. There have been previous efforts to compile solar irradiance but it is still uncertain by how much the spectral and total solar irradiance changed on yearly, decadal and longer time scales. Observations of irradiance data exist in numerous disperse data sets. Therefore, it is important to analyse and merge the complete set of irradiance data. We report on the initiation of the European collaborative effort SOLID to bring together all European groups involved in irradiance modelling and reconstruction along with collaborators in the US. The project includes the detailed analysis and compilation of all existing SSI and proxy data sets. Furthermore, two different state of the art approaches to produce reconstructed spectral and total solar irradiance data as a function of time are employed, the empirical and semi-empirical modeling of the SSI. These reconstruction results will be used to bridge gaps in time and wavelength coverage of the observational data. This will allow the SOLID team to reduce the uncertainties in the irradiance time series - an important requirement for any user community. In this talk an overview of the SOLID project will be given, along with a more detailed discussion of the reconstruction of the EUV irradiance variations.

¹ Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC), Switzerland

² Max Planck Institut Institut für Sonnensystemforschung, Lindau-Katlenburg, Germany

⁵ The Laboratory of Physics and Chemistry of the Environment and Space (LPC2E), Centre National de la Recherche Scientifique (CNRS) & University of Orléans, France

⁸ Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) / Centre National de la Recherche Scientifique (CNRS), France ⁹ AUTH, Thessaloniki, Greece

¹⁰ Imperial College London, United Kingdom

¹² Laboratory for Atmosphere and Space Physics (LASP), University of Colorado, Boulder