Of straying photons, shiny apertures and inconstant solar constants – Advances in TSI radiometery

SORCE 2014 Science Meeting, 29 January 2014 Wolfgang Finsterle

Physikalisch-Meteorologisches Observatorium Davos World Radiation Center

Metrology of Solar Irradiance

TSI reference scales since 1905

1905: Ångström 1911: Smithsonia 1956: IPS-56 1977: WRR 1995: SARR 2007: TRF (SI)

PM06 Radiometer

Scattered light was suggested by the NIST (2005) working group to cause the scale differences between TIM/SORCE and other TSI instruments (Butler et al. 2008).

WIC

PM06 Radiometer

Scattered light was suggested by the NIST (2005) working group to cause the scale differences between TIM/SORCE and other TSI instruments (Butler et al. 2008).

WrC

PM06 Radiometer

Scattering cross section [mm²]: $D*\pi*h*\cos(\theta)$

 $D*\pi*h*\cos(\theta) \\ \leq 8.3*\pi*20*10^{-3}*0.009 \\ 0.005$

≈ 0.005

The scattering cross section accounts for ~225 ppm of the area of the radiometric aperture (20 mm²) Even 100% scattering efficiency could not increase the irradiance by ~3000 ppm

WIC

PM06 Radiometer

PM06 Radiometer

PM06 Radiometer

Straying photons and a shiny aperture

Scattering ratio [TSI]]:

$$(R-r)^2 * \pi * \rho$$

 $\geq (4.15-2.5)^2 * \pi * 0.2$
 ≈ 1.7 (!!!)

 $(\rho = reflectance of aperture)$

WIC

At least 1.7 times the radiant power which enters the cavity "illuminates" the light baffles. Even a 99.999% efficiency (visible and thermal IR) of the light baffles would still increase the irradiance in the cavity by ~1700 ppm (0.17%).

Re-determination of stray-light correction for PM06/PREMOS radiometers at the TRF

	Stray light correction factor	Relative uncertainty
PREMOS-1 (B)	0.998007	0.000342
PREMOS-3 (A)	0.998298	0.000222
VIRGO-2	0.998097	0.000257

Total stray light correction factor measured by expanding the TRF beam from 2 mm to 11 mm (Fehlmann 2011, Fehlmann et al. 2012)

The original determination of the stray light correction factor for PMO6 radiometers yielded 0.99968 (Brusa et al. 1986), which is \sim 0.17% below the new factor.

Experimental comparison of scales

- The WRR was compared to cryogenic radiometers at National Metrology Institutes using PMO6-type transfer radiometers
 - Good agreement (~0.1%) in power mode (1991-2010)
 - 0.3% WRR-to-SI discrepancy in irradiance mode at the TRF (2010)

 The incorrect stray-light correction of the PMO6 radiometers prevented the WRR-to-SI discrepancy to become apparent in 1991

Inverted aperture geometry – The simple solution to a difficult problem

TIM

WIC

CLARA – The successor to the PM06

CLARA features inverted aperture geometry, three cavities, low non-equivalence, high cadence, high tolerance to temperature variations, launch on NORSAT-1 in 2015/16. See poster for details on CLARA!

WIC

DARA – The working prototype for CLARA

- Built in 2010
- Fully characterized
 - No stray light / scattering correction
 - Air-to-vacuum correction 430 ppm
- Traceable to WRR and TRF
 - Confirming WRR-to-SI differences found by Fehlmann et al. 2012

WrC

DARA	Cavity A	Cavity C
WRR/SI(TRF)	1.0030	1.0029
Uncertainty (2ơ)	0.0012	0.0012

The Cryogenic Solar Absolute Radiometer CSAR

METAS NPL®

CSAR-WRR difference

- CSAR results are ~0.3% below WRR
- In line with TRF
- Daily averages were needed to reduce major noise sources
 - Transmittance monitor
 - Cavity heater control
 - Perfectly sunny weather required
- Improved version of transmittance monitor has uncertainy

Improved transmittance monitor

47 ppm (1-σ)

WrC

Conclusions

- TIM/SORCE has triggered major new developments in TSI radiometry
- The disagreement between TIM and other TSI radiometers was caused by different scales
- The scale differences had been concealed by incorrect stray light correction of PMO6
- PMOD/WRC has developed new generations of ambient temperature and cryogenic solar radiometers

