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ISSUES TO BE SOLVED

- How should the magnetic structures be defined?

- How important is the center-to-limb (CTL) effect?

- What is the contribution of magnetic structures to the SSI?

- What spatial resolution is sufficient?

To answer these questions consider an

empirical (“less biased”) approach. No
assumptions on atmospherical models.




MORE EMPIRICAL MODEL



MORE EMPIRICAL MODEL

SDO/HMI 201104~

magnetogram



MORE EMPIRICAL MODEL

SDO/HMI 201104~

magnetogram continuum image



MORE EMPIRICAL MODEL

magnetogram continuum image segmentation map



MORE EMPIRICAL MODEL

magnetogram continuum image segmentation map



MORE EMPIRICAL MODEL

magnetogram continuum image segmentation map

Linear SATIRE-like model:

I t) =Y > S\ for) - F(f,r,t) + So(A) + £(A, 1)
o f

S(\, f,r) - characteristic spectrum of class
finringr

F(f,r,t) -filling factor of class fin ring r
(fraction of solar disk covered by
magnetic structures of this class)
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MODEL BUILDING

I ) =) N S\ for) - F(f,r,t) + So(A) + E(A 1)
rof

Difference

- spectra S are not imposed.
- number of classes f is not imposed.

- threshold levels between classes f are not pre-defined.
- number of rings r is not imposed.

- segmentation of magnetograms according

to area of magnetic structures.

1 S - model atmosphere
s — I F- I - spectral irradiance observations

F -filling factors
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DATA

- Model is calibrated with SSI observations (daily averages).

SDO/EVE 6.5-9.5 XuUv
SDO/EVE 10.5-35.5 EUV
TIMED/SEE 36-115 EUV

SORCE/SOLSTICE 121 LyA
SORCE/SOLSTICE 115-200 FUOVv
SORCE/SOLSTICE 280
SORCE/SOLSTICE 200-300

SORCE/TIM TSI

- Magnetograms and continuum images

SDO/HMI and SDO/AIA respectively (4096x4096
compressed to 2048x2048 pxls)

Time interval: 24/04/2010 - 01/07/2013 (about 3
years of data)
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SEGMENTATION OF MAGNETOGRANMS BY
AREA VS INTENSITY

Segmentation by magnetic field intensity is
common approach.

Disadvantages:

Solution:
segmentation by
area.

Absolute calib

processing

active region
observer

intensity
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Theoretical center-to-limb curves
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Theoretical center-to-l1imb curves
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Theoretical center-to-l1imb curves
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arbitrary units

FILLING FACTORS

1 -penumbra

1 structures =
faculae

7 -small
structures =

|

= active network

6 433 460 487 514 541 568
Time, days
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LOWER THRESHOLD FOR AREA

What spatial resolution for solar
images is needed?

Gradually increase the lower
limit for area of active regions
that are taken into the model and
see how the reconstruction
quality changes.
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XUV/EUV
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LOWER THRESHOLD FOR AREA

What spatial resolution for solar
images is needed?

Gradually increase the lower
limit for area of active regions
that are taken into the model and
see how the reconstruction

XUV/EUV
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not bring new information to
the model.




- We find 4 principal classes of magnetic structures (big magnetic
structures = faculae, small magnetic structures = active network,
umbra and penumbra) that allow to reconstruct the SSI variability
in the optimal way.

- Big magnetic structures have size grater that 128"’ x 138,

- Small magnetic structures have size from 8’ x 8’ to 1238”’ x 138 7,

- Small magnetic structures contribute more to cold emissions from
chromosphere and photosphere.

- Big magnetic structures contribute more to hot lines .

- Center -to-limb variation effect plays significant role for MUV /FUV
emissions in range from 170 to 265 nm.







