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Basic Concepts of Satellite Aerosol Retrieval Algorithms

toa surf atm
P~ P AT P
Where, D is the spectral reflectance measured at the top of the atmosphere (TOA)
[O=, 1s the component of the TOA reflectance contributed by the surface

[=m, 18 the component of the TOA reflectance from the atmosphere (or path radiance)

» QOver ocean, psf, is known (550-2130nm)

= pdtm, ~ 1, * P, (0); the spectral information can be used to derive information on
aerosol type, which is then used to derive the aerosol loading.

» Over land, psuf, is complex

= if pam, , , ~0, then p**™, _, | can be estimated
= if psutf, ~ f (psut, _, ;) then p®™, can be derived

= T, can be derived assuming an aerosol model, i.e P; (0); if there are relationships
between the spectral reflectances at different wavelengths.



Dubovik et al., 2002, JAS paper on aerosol optical properties (p. 591):

Modeling the aerosol effects on atmospheric radiation, by solving the
radiative transfer equation, requires the following aerosol optical
properties:

aerosol optical thickness 1, (loading);

phase function P (® ; A) (angular dependence of light scattering),

single-scattering albedo @), (ratio of scattering to scattering +
absorption).




Sayer et al., 2016, JGR, Extending Deep Blue aerosol retrieval
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Figure 3. Summary of spectral optical properties of the (a—c) four smoke and (d-f) two dust aerosol optical models
studied. Panels show spectral AOD (Figures 3a and 3c), spectral SSA (Figures 3b and 3e), and spectral ASY (Figures 3¢
and 3f). Paler to stronger colors are used to indicate models with weaker to stronger levels of absorption.



Summary of satellite aerosol retrieval

Models used for aerosol retrieval from satellite
observations are often based on aerosol
measurements from the ground, predominantly the
Aerosol Robotic Network (AERONET) of ground-
based sun photometers/sky radiometers. These
models are often used to develop look-up tables
(LUT) to facilitate aerosol retrieval.




Ground-based aerosol remote sensing based on
direct spectral solar irradiance: AERONET example

https://aeronet.gsfc.nasa.gov




Ground-based AERONET used to validate satellite aerosol retrieval

MAPSS (Multi-sensor Aerosol Products Sampling System)

MAPSS: Multi-sensor Aerosol Products Sampling System
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Ship-based MAN used to validate satellite aerosol retrieval
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Aerosol remote sensing based on Beer-Bouguer-Lambert’s law. Simply:

where,  1(A) = Io(A) exp[—7(A)/cosO]

I,(2) is the extraterrestrial flux at wavelength A,
I(A) 1s the flux reaching the ground, 0 is the solar zenith angle, and
7(A) is the total optical depth

Dutton et al., 1994, JGR states:

“The need for absolute irradiance measurements is eliminated for ©A4)
computation because the linear response of the sunphotometer is such that
a linear conversion constant cancels from both sides of the equation, and
the instrument output voltages, V(1) and V(1) replace I(A) and I,(4).”

This means: V(A1) =k *I(A) and V(1) =k * I, (A)

Where k 1s a convolution of various instrument specific parameters (filter
transmission, field of view, detector sensitivity, etc.)



Thus, for direct sun measurement using sun photometers:

V, = VOAD_z exp(—7, M)
V. =V, D”?exp[-t,M —k(WM)"]

where, for each channel (wavelength A in microns),

V, = the signal measured by the instrument at wavelength A,

V,,= the extraterrestrial signal at wavelength A,

D = Earth-Sun Distance in Astronomical units at time of observation,
1, = total optical thickness (7, = 7,; + 75, + 73,) at wavelength A,
T,, = aerosol optical thickness (AOT) at wavelength A,

Tr;. = Rayleigh (air) optical thickness at wavelength A,

Toy, = Ozone optical thickness at wavelength A,

M = the optical air mass

W = vertical water vapor column thickness

k and b are instrument constants numerically derived for the 936 nm filter.

Ichoku et al., 2002, JGR, Microtops



Sun-photometer calibration approaches:

Langley calibration under pristine conditions (Mauna Loa)
In(V,)=In(V,,D") -7, M

Or

Transfer calibration from a Langley-calibrated Instrument

I/i/v — I/O/v
A 04

Ichoku et al., 2002, JGR, Microtops



Transfer Calibration of five Microtops sun- photometers against AERONET at NASA/GSFC
a
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AOT values can differ significantly depending on calibration method
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TOA-measured SSI seems more realistic than modeled
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Pandora Spectrometer for Ground-based RS of Trace Gases

Instrument Head

Herman et al., 2015, AMT paper on Pandora (p 3409):

The laboratory-calibrated Pandora TCO retrieval algorithm uses an external
solar reference spectrum derived from a combination of the Kurucz spectrum
(wavelength resolution A/AAL = 500 000) radiometrically normalized to the
lower-resolution shuttle Atlas-3 SUSIM spectrum (Van Hoosier, 1996;
Bernhard et al., 2004).




Herman et al., 2015, AMT paper on Pandora (p 3409):

The use of a well-calibrated top-of-the-atmosphere spectrum
convolved with the laboratory-measured spectrometer slit
function derived for each pixel permits derivation of ozone
amounts without resorting to either a Langley calibration
approach or calibration transfer from a standard instrument. The

core slit function is known to within 1%, which propagates into
an ozone error of less than 1%.

Smirnov, 2018, personal communication:
This statement is correct, but only if we are sure that SSI is
known with an uncertainty of less than 0.5%.




Coddington et al., 2014, BAMS paper on Solar Irradiance:

Table |. Measurement requirements established for the TSIS TIM and
SIM instruments that are driven by the need to understand Earth’s
climate response to solar variability, for separating natural from
anthropogenic climate forcing effects, and for the monitoring and
interpretation of the variability in wavelength-dependent processes
induced by changes in Earth’s surface and atmosphere.

Parameter TSI CDR requirement SSI CDR requirement
Absolute accuracy 0.01% (0.2%)

“005% yr~' (A <400 nm)

Stability 0.001% yr™!
0.01% yr~' (A > 400 nm)

Relative precision 0.001% 0.01%

Take Home Message: If SSI measurements from TSIS and future
missions meet these requirements, they should be seriously considered
for calibration of Sun-pointing ground-based instruments
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