Physikalisch-Meteorologisches Observatorium Davos World Radiation Center

TOTAL SOLAR IRRADIANCE PREMOS/PICARD and CLARA/NorSat-1

Werner Schmutz with contributions by Gael Cessateur (PREMOS), Benjamin Walter and Wolfgang Finsterle (CLARA) and the PREMOS and CLAR teams

PMOD/WRC, Switzerland

Lake Arrowhead, CA, USA 20.3.2018-23.3.2018

Overview

• Introduction:

Amplitude vs time scale of TSI variations and stability of long term trends

- New version PREMOS/PICARD data (27.7.2010-4.3.2014)
 - data version 1 (distributed version): linear correction of the sensitivity change
 - assessing the beginning to end-of-mission sensitivity change *"ratios of ratios"* (Ball et al. 2016, JSWSC 6, A32)
 - Data version 2: detector sensitivity change assessment by comparison to other space experiments
- What TSI accuracy do we need?
- News from CLARA/NorSat-1: 1st light 21.8.2017
- Conclusions

TSI varies on all time scales

Fig. 1 | Short-term TSI variability at three intervals of very different activity level and variability of the Sun. a,d,g, Calculated TSI variations (orange), as well as calculated total magnetic (black), facular (red) and spot (blue) contributions to the TSI variation for the three 1-month intervals listed in Table 1. The plotted curves have been offset around zero for clarity. **b**,**e**,**h**, Global wavelet power spectra of the calculated TSI variations. In addition to the variability components shown in **a**,**d**,**g**, the granulation components (green) are plotted. Note that the green lines are not visible below 5 h (indicated by

Shapiro et al. 2017 Nature Astronomy 1, 612 3

20.3.2018

Werner Schmutz

Fig. 2 | TSI variability on timescales from 4 min to 19 years. Main panel, power spectra of modelled (black) and measured (orange) TSI variations. Werner Schmutz

Different instruments have different strengths

Werner Schmutz

Long term TSI trend

Fig. from Fröhlich, JSWSC 6, A18 (2016)

	TSI trends		рто	d wrc
Fig. from Fröhlich, JSWSC 6, A18 (2016)				
4 TSI space exp - PREMOS data (2010-2014 - TIM (launchec - ACRIM III (200	comparing instr estimate the order	lusion: uments allow	vs to	0 ppm
- DIARAD/IRME relative to VI (launched 1995	TSI-trend after 2003 is of the order of ≈ 200 ppm / 10 years PREMOS/PICARD can be used to assess whether TIM or VIRGO was likely to be more stable			
	2005	5 2010	2015	

PREMOS/PICARD (27.7.2010-4.3.2014) pmod wrc

PREMOS instruments: Total Solar Irradiance ➤ 2 PMO6-type

absolute radiometers

Spectral Solar Irradiance▶ 12 filter radiometers@ 6 wavelengths

Filter Radiometers

Total Solar Irradiance

PREMOS is the first SI-traceable calibrated radiometer in space
 First Light on 27. July 2010
 PREMOS(TRF)/PICARD 1360.9 +- 0.4 W/m² 1361.0 W/m²

 \rightarrow TIM and PREMOS are consistent !

Schmutz et al. 2013, AIP 1531, 624, doi: 10.1063/1.4804847 (in 2013, TIM V13 was at 1361.3 W/m²)

Basics of sensitivity corrections of radiometers

Standard tool to correct for inflight degradation:

- \rightarrow two or more radiometers (PREMOS has 2):
- \mathcal{A} exposed operationally
- \mathcal{B} exposed rarely for calibration only

Hypothesis: \mathcal{B} has the same sensitivity change as \mathcal{A} as a function of the exposure time

Until 3. February 2014: \mathcal{A} total exposure:600 days \mathcal{B} total exposure:3.75 days

→ Sensitivity change is evaluated from the measured \mathcal{A} to \mathcal{B} ratio

pmod wrc

Sensitivity change of \mathcal{A} relative to \mathcal{B}

Ratios \mathcal{A} to \mathcal{B}

Ratios \mathcal{A} to \mathcal{B} compared to \mathcal{A} to DIARAD and \mathcal{A} to PMO6-V pmod wrc

PREMOS data version 1

Correct sensitivity change of \mathcal{B} with a linear increase: Exposure time B until end of operation of A: 3.75 days Exposure time B until end of operation: 13.5 days

Schmutz et al. 2013:

81.7 ppm per exposure day

PREMOS head \mathcal{B} Feb-March 2014

Ratios \mathcal{A} to \mathcal{B} compared to \mathcal{A} to DIARAD and \mathcal{A} to PMO6-V pmod wrc

Ratio PREMOS-*B* to DIARAD 2014 Feb12 - March 4

<u>Hypothesis is verified:</u> \mathcal{B} (in 2014 starting at t_E =3.75 days) had the <u>same</u> sensitivity change as \mathcal{A} (in 2010) as a function of the <u>exposure time</u>

→ Use the measured A:B ratios in 2010 to correct for the sensitivity changes of head B from 2010 to 2014

PREMOS calib. V1 versus TIM pmod wrc

Overview (repeat)

- Amplitude vs time scale of TSI variations and Stability of long term trends
- New version PREMOS/PICARD data (27.7.2010-4.3.2014)
 - data version 1 (distributed version): linear correction of the sensitivity change
 - assessing the beginning to end-of-mission sensitivity change ratios of ratios (Ball et al. 2016, JSWSC 6, A32)
 - Data version 2: detector sensitivity change assessment by comparison to other space experiments
- What TSI accuracy do we need?
- News from CLARA/NorSat-1(1st light 21.8.2017)
- Conclusions

Ball et al. 2016, JSWSC 6, A32

Use the measured \mathcal{A} : \mathcal{B} ratios in 2010 to correct for the sensitivity change of head \mathcal{B} in 2014:

- 1) Determine the accumulated exposure time t_E of head \mathcal{A} for the measured \mathcal{A} : \mathcal{B} ratios 1, 2, ..., 6, ...
- 2) Determine the dates of head \mathcal{B} when it has accumulated the corresponding dose
- 3) Use "**ratios of ratios**", e.g. ratio-4/ratio-1, to correct for the sensitivity change of head \mathcal{B} in 2014 <u>relative</u> to the date when B had accumulated the same exposure time as A in 2010 for ratio-1

Ratios \mathcal{A} to \mathcal{B}

Until 4. Feb 2014 B had 3.75 days of exposure

Using ratios \mathcal{A} to \mathcal{B} : Step 3

Conclusions by Ball et al. (2016) pmod wrc

PREMOS \mathcal{B} "ratios of ratios" sensitivity correction has an uncertainty October 2011 to February 2014 ratio: +-0.02 Wm⁻² (over 2.3 yr) \rightarrow 6 ppm per year

PREMOS \mathcal{B} agrees with TIM

 \rightarrow TIM stability confirmed to \leq 6 ppm/yr

PREMOS ℬ disagrees with PMOD composite (version 2016!) Difference: 0.12 Wm⁻² or 90 ppm after 2.3 years → PMOD-composite stability approximately ≥ 38 ppm/yr (not clear: systematic or random ?)

PMOD-composite cycle-cycle minima uncertainty: 11 yr x 38 ppm/yr = **418 ppm** → **0.6 Wm**⁻² !

Is there an observed TSI-trend?

Overview (repeat)

- Amplitude vs time scale of TSI variations and Stability of long term trends
- New version PREMOS/PICARD data (27.7.2010-4.3.2014)
 - data version 1 (distributed version): linear correction of the sensitivity change
 - assessing the beginning to end-of-mission sensitivity change ratios of ratios (Ball et al. 2016, JSWSC 6, A32)
 - Data version 2: detector sensitivity change assessment by comparison to other space experiments
- What TSI accuracy do we need?
- News from CLARA/NorSat-1(1st light 21.8.2017)
- Conclusions

PREMOS-A to <instrument> 21-Jul – 26-Sep 2010

PREMOS-A to <instrument> 21-Jul – 26-Sep 2010

PREMOS- \mathcal{B} to VIRGO Sep. 2010 vs Feb. 2014

Overview (repeat)xs

- Amplitude vs time scale of TSI variations and Stability of long term trends
- New version PREMOS/PICARD data (27.7.2010-4.3.2014)
 - data version 1 (distributed version):
 linear correction of the sensitivity change
 - assessing the beginning to end-of-mission sensitivity change ratios of ratios (Ball et al. 2016, JSWSC 6, A32)
 - Data version 2: detector sensitivity change assessment by comparison to other space experiments
- What TSI accuracy do we need?
- News from CLARA/NorSat-1(1st light 21.8.2017)
- Conclusions

Reconstructed temperature in Kyoto and Edo bay (Tokyo)

Aono & Kazui (2008); Aono (2015)

Reconstructed temperature in Kyoto and Edo bay (Tokyo)

Reconstructed (and guessed to 2030) TSI development

- Amplitude vs time scale of TSI variations and Stability of long term trends
- New version PREMOS/PICARD data (27.7.2010-4.3.2014)
 - data version 1 (distributed version):
 linear correction of the sensitivity change
 - assessing the beginning to end-of-mission sensitivity change ratios of ratios (Ball et al. 2016, JSWSC 6, A32)
 - Data version 2: detector sensitivity change assessment by comparison to other space experiments
- What TSI accuracy do we need?
- News from CLARA/NorSat-1(1st light 21.8.2017)
- Conclusions

Innovation

A new generation of the Davos space radiometers:

- CLARA = Compact Light weight Radiometer
 - Mass: 2.21 kg
 - Dimension: 12.8 x 15.8 x 13.8 cm
 - Average power consumption: 4.5 W
 → suitable for Micro- / Nanosatellites

CLARA/NorSat-1

CLARA Innovations

Innovation1:

Radiometer box and control unit in different boxes. The radiometer unit is thermally fully isolated

Innovation-2:

Digital controller
→ measurement frequency 30 sec
(15 s open – 15 s closed)
(PMO6V 120 sec)

CLARA Innovations

Innovation-3:

Three cavity design for degradation tracking and redundancy

New Cavity and heatsink design to minimize size and weight of the instrument

CLARA/NorSat-1

Calibration at TSI Radiometer Facility (TRF) in Boulder, Colorado

		TRF Ground (532 nm laser, vacuum)						Space (solar spectrum, vacuum)								
		Channel A		Channel B		Channel C		Channel A			Channel B			Channel C		
	Characterization item	Value	σ	Value	σ	Value	σ	Value	$\sigma_{ m Native}$	$\sigma_{ m Lab}$ Scale	Value	$\sigma_{ m Native}$	$\sigma_{ m Lab}$ Scale	Value	$\sigma_{ m Native}$	$\sigma_{ m Lab}$ Scale
Native Scale	Aperture area $(1/C_{apert})$ (mm ²)	19.6299	28	19.6242	28	19.6235	28	19.6299	28	_	19.6242	28	_	19.6235	28	_
	Aperture temperature	_	39	_	39	_	39	_	39	39	-	39	39	-	39	39
	Absorptivity (C_{abs})	1.002056	288	1.002198	308	1.002048	287	1.002225	311	92	1.002372	332	88	1.002217	310	92
	Pointing (absorptivity)	_	_	_	_	_	_	_	30	30	-	30	30	-	30	30
	Diffraction (C_{diff})	1.000491	24	1.000491	24	1.000491	24	1.000867	31	31	1.000867	31	31	1.000867	31	31
	Non-Equivalence (C_{ne})	1.000007	4	1.000007	4	1.000007	4	_	_	_	-	_	_	-	_	_
	Dark correction (C_{dark})	_	_	_	_	_	_	1.000830	65	65	1.000830	65	65	1.000830	65	65
	Heater voltage $(C_{\rm U})$	0.999200	1600	0.999200	1600	0.999200	1600	0.999200	1600	160	0.999200	1600	160	0.999 200	1600	160
	Shunt voltage $(C_{\rm I})$	0.999200	1600	0.999200	1600	0.999200	1600	0.999200	1600	160	0.999200	1600	160	0.999 200	1600	160
	Shunt resistance	_	40	_	40	_	40	_	40	40	-	40	40	-	40	40
	Lead heating (C_{lh})	1.000950	25	1.001 084	25	1.001 009	25	1.000950	25	_	1.001084	25	_	1.001 009	25	_
	Shutter delay issue	_	_	_	_	0.998 600	700	_	_	_	-	_	_	0.998600	700	700
	Calibration factor	1.001902	2282	1.002179	2285	1.000551	2387	1.003273	2286	_	1.003 555	2289	_	1.001920	2391	_
ц È	Repeatability	_	236	_	217	_	258	_	_	_	-	_	_	-	_	_
Comparison to Laboratory	Scattered light	0.999920	40	0.999920	40	0.999920	40	_	_	_	-	_	_	-	_	_
	Aperture placement	1.000650	225	1.000650	225	1.000650	225	_	_	_	-	_	_	-	_	_
	TRF calibration uncertainty	_	393	_	393	_	393	_	_	_	-	_	_	_	_	_
	CLARA/TRF ratio	1.001693	512	1.001221	504	1.001409	523	1.001693		512	1.001221		504	1.001409		523
SI cryogenic laboratory scale calibration factor:								1.001577	-	576	1.002331	-	567	1.000510	-	912

 $\pm 0.77 \text{ W m}^{-2} \pm 0.77 \text{ W m}^{-2} \pm 1.24 \text{ W m}^{-2}$

≏ 576 ppm

Walter et al. 2017, Metrologia 54, 674

1st light TSI value cavity B

Daily averages of virgo 6h TIM value at orbit time

Comparison to composite and TIM pmod WrC

1st light TSI value cavity B

Daily averages of virgo 6h TIM value at orbit time

Summary CLARA/NorSat-1

- Launched on 14.7.2017
- Preliminary 1st light value of cavity B on 21./22.8.2017
 1360.0 ±0.77 W/m²
- Three cavity design should provide excellent long term stability of CLARA/NorSat-1 ...

... to be seen !

Conclusions

- ➔ TSI-composite has a problem 2013/2014 at the transition from the VIRGO-ACRIM-III-TIM-PREMOS to the VIRGO-TIM-TCTE period
- Ball et al. (2016) assessment of the relative calibration of PREMOS/PICARD supports the TSI record of TIM and disagrees with VIRGO
- → PREMOS data vs2 confirms stability of TIM
- TSI-composite may have a tend of the order of a few 100 ppm/10 yr for > 1996
- → This TSI record accuracy is sufficient for climate impact estimates
- CLARA/NorSat-1 is a new operational radiometer to help establishing the long term stability of the TSI-composite

Thank you for your attention !

Correcting A using the corrected B channel

