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Why TSI observations matter 

Total Solar Irradiance observations are the key to 
understanding long-term solar variations
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Observations we have
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What we would like to have
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What we *really* would like to have
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A common problem

The problem of making composite arises other contexts 
 
e.g. Mann et al. (2008)
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the CPS (or EIV) reconstructions (SI Text and Fig. S8). However,
we observed that the pronounced cooling between approximately
A.D. 750 and A.D. 1000 in the current CPS reconstruction is based
on prominent excursions in a relatively small number (see Fig. S9)
of the 15 NH proxy series available in the screened network back
through the 9th century and that the amplitude of the cooling is
somewhat sensitive to the removal of individual proxy records (see
Fig. S10). Analysis of synthetic ‘‘pseudoproxy’’ proxy networks (SI
Text, Figs. S12–S14, and Tables S2–S4) indicates that such apparent
pronounced hemispheric temperature anomalies in the reconstruc-
tions can arise as purely spurious features with the CPS approach,
given such sparse networks, an artifact of the statistics of averaging
a small number of noisy local temperature estimates. By contrast,
we find in these experiments that the EIV reconstructions are
significantly more skillful, given a particular synthetic data network.
Where the two methods no longer yield reconstructions that agree
within uncertainties, it is therefore likely that the EIV reconstruc-
tion is the more reliable, although with the caveat that this finding
has been demonstrated only under the assumptions implicit in the
pseudoproxy analyses (e.g., that proxies have a linear, if noisy,
relationship with local temperature variations). For this reason, we
place greatest confidence in the EIV reconstructions, particularly
back to A.D. 700, when a skillful reconstruction as noted earlier is
possible without using tree-ring data at all.

SH and Global Temperature Reconstructions. Conclusions for SH
mean temperatures are somewhat weaker (Figs. S5 and S6), plau-

sibly due to the relative paucity of proxy data in the SH (Fig. 1).
Nominally, recent warmth appears anomalous in the context of the
past 1,500 years from the CPS reconstructions, but skillful CPS
reconstructions are not possible without tree-ring data before A.D.
1700, implying additional caveats as discussed above. Recent
warmth exceeds that reconstructed for at least the past 1,800 years
in the EIV reconstructions, and this conclusion extends back at
least 1,500 years without using tree-ring data. However, the esti-
mated uncertainties are compatible with the possibility that recent
SH warmth might have been breached during brief periods in the
past. Similarly, for global mean temperature, the CPS reconstruc-
tion suggests that recent warmth is anomalous for at least the past
1,500 years, but with the caveat that tree-ring data are required for
a skillful long-term reconstruction. The EIV reconstruction indi-
cates recent warmth that exceeds the reconstructed warmth (past
1,500 years with caveats related to the use of tree-ring data, and the
past 1,300 years if tree-ring data are excluded), but like the SH, the
uncertainties are compatible with the possibility of brief periods of
similar warmth over the past 1,500 years. More confident state-
ments about long-term temperature variations in the SH and globe
on the whole must await additional proxy data collection.

Conclusions
We find that the hemispheric-scale warmth of the past decade for
the NH is likely anomalous in the context of not just the past
1,000 years, as suggested in previous work, but longer. This
conclusion appears to hold for at least the past 1,300 years
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Fig. 3. Composite CPS and EIV NH land and land plus ocean temperature reconstructions and estimated 95% confidence intervals. Shown for comparison are
published NH reconstructions, centered to have the same mean as the overlapping segment of the CRU instrumental NH land surface temperature record
1850–2006 that, with the exception of the borehole-based reconstructions, have been scaled to have the same decadal variance as the CRU series during the
overlap interval (alternative scaling approaches for attempting to match the amplitude of signal in the reconstructed and instrumental series are examined in
SI Text). All series have been smoothed with a 40-year low-pass filter as in ref 33. Confidence intervals have been reduced to account for smoothing.

13256 ! www.pnas.org"cgi"doi"10.1073"pnas.0805721105 Mann et al.
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Separation of powers
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Separation of powers

8

DATA

METHOD APPLICATION

What prior information 
goes into the correction 

of the original data ?

What is the best way of 
making the composite ? 

What do I learn from 
applying these data ?
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Separation of powers
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DATA

METHOD APPLICATION

What prior information 
goes into the correction 

of the original data ?

What is the best way of 
making the composite ? 

What do I learn from 
applying these data ?

Open science : transparency, replicability, 
traceability, community endorsement



Making of the TSI composite
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4-step procedure

1. Estimate the absolute TSI level

2. Estimate the uncertainty of each TSI record

3. Build composite by weighted averaging

4. Estimate the uncertainty of the composite
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1. Absolute level 

ˈabsəluːt ˈlɛv(ə)l
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1. Estimate absolute TSI

Absolute level :

average of “Day 1” absolute value of each instrument

weighted by uncertainty
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2. Uncertainties 

ʌnˈsəːt(ə)nti
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2. Uncertainties

Uncertainties

essential to assign proper weights to each instrument 

But instrument teams provide very different (inconsistent) 
values 
 

14
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14
⇒ we need to build our own uncertainty estimates
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2. Uncertainties

We tested 4 different estimators


General idea : short-term uncertainty (precision)  
affects short-term predictability
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2. Uncertainties

Average precision of different records
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2. Uncertainties

Average precision of different records
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How do we estimate uncertainties at longer 
time-scales (i.e. stability) ?
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2. Uncertainties

We observe a 1/f scaling in the uncertainty 

Use this scaling to estimate uncertainties at all scales

instrumental noise is not white

1/f scaling means long-range correlations (non stationarity)
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2. Uncertainties

We observe a 1/f scaling in the uncertainty 

Use this scaling to estimate uncertainties at all scales

instrumental noise is not white

1/f scaling means long-range correlations (non stationarity)
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3. Making the composite 

ˈmeɪkɪŋ ðiː ˈkɒmpəzɪt 
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3. Making the composite

Composite = average of all observations, weighted by 
their uncertainty


How do we deal with discontinuous observations ?
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3. Making the composite

Multiscale decomposition of the TSI : example
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3. Making the composite

Multiscale decomposition of the TSI : example
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Solution: average the data scale-by-scale
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3. Making the composite

Example : Bridging the ACRIM gap between 1989-1991

21
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3. Making the composite

Example : Bridging the ACRIM gap between 1989-1991

21

Stitching of partly-overlapping records is not 
essential for preserving long-term evolution 



3. Uncertainty of the composite 

ʌnˈsəːt(ə)nti of ðiː ˈkɒmpəzɪt 
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4. Uncertainties of the composite

We propagate uncertainties by using a Monte-Carlo  
approach


Errors are not white  
 
⇒  uncertainty on TSI(t1)-TSI(t2) depends on |t1-t2| 
 

23
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4. Uncertainties of the composite

We propagate uncertainties by using a Monte-Carlo  
approach


Errors are not white  
 
⇒  uncertainty on TSI(t1)-TSI(t2) depends on |t1-t2| 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Expressing stability in % per decade is not correct
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4. Uncertainties of the composite

Uncertainties are best expressed in 2D
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Finally, the composite 

ˈfʌɪnəli, ðiː ˈkɒmpəzɪt 
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The composite

26

composite

yearly average


corrected records:  
HF, ACRIM1, 
ACRIM2, ERBE

uncertainty
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The composite

27

comparison with 
other observational 
composites

comparison with 
TSI models
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Conclusion

a new methodology for creating composites 

advantages : 


performance : uses all available information + data-driven

transparency : all assumptions are made explicit

traceability : you know what your inputs are


Open issues & future

validation : ongoing  (issue with boundary conditions for 
wavelet transform)

include information from instrument teams  (e.g. time-
dependent errors)

provide guidance for observation strategy

application to spectral irradiance data & sunspot record data
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OFFICIAL ANNOUNCEMENT

Two initiatives to pursue this work, both led 
by Greg Kopp

ISSI team (2013-2014)

Solar Irradiance Science Team (SIST) proposal 
on “TSI Composite and Historical Extensions 
via Updated Sunspot Record” (2018)

The team will soon propose this new TSI 
composite to the community

Pending issues

tweaks and adjustments in the method

decision on what corrections should be made to 
the original data

29
Stay tuned !
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Interpolation

Missing data are interpolated by expectation-maximization
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Wavelet transform
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Weights
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