

National Aeronautics and Space Administration Goddard Institute for Space Studies Goddard Space Flight Center Sciences and Exploration Directorate Earth Sciences Division

## Improvements in Coupled Ocean-Atmosphere Model Responses to Solar Activity





Gavin Schmidt, David Rind, Susanne E. Bauer, Marvin A. Geller, Drew T. Shindell, Tiehan Zhou



### **Potential Mechanisms**

Goddard Institute for Space Studies



Gray et al, 2010



### Previous modelling (Solar max to min)





# **GISS modelling of solar impacts**

Goddard Institute for Space Studies

### **CMIP5**: interactive, OAGCM 20th C transients

**NINT**: non-interactive aerosols/chemistry (~AR4)

- **TCADI**: Interactive all-atmosphere chemistry (bulk aerosols) + first indirect effect
- 5 member ensembles
- two ocean models (GISS-E2-R & GISS-E2-H)

All-forcings + solar-only + ozone only

### TCADI/MATRIX (aerosol moment scheme)

Includes nucleation/ionisation

Forcing:

20th C: Spectral: Lean (2009) TSI: Wang et al. (2005)



### **Potential Mechanisms - CMIP5**

Goddard Institute for Space Studies



Gray et al, 2010



### Stratospheric time-series (SSU+TLS)

Goddard Institute for Space Studies



Year



### Stratospheric time-series (SSU+TLS)

Goddard Institute for Space Studies



#### SSU Model/Obs comparison



### Stratospheric time-series (SSU+TLS)

Goddard Institute for Space Studies



Solar-only experiments (non-interactive chemistry)

Year



### **Ozone solar cycle response**

Goddard Institute for Space Studies

Ozone response to solar cycle (SABER)

Ozone response 2001-2002 to 2007-2008 (run d)



SABER: Merkel et al. (2011) (One cycle: 2002/3 - 2008/9) Model: single ensemble member (2001/2 - 2007/8)



### Stratospheric profile of ozone changes

Goddard Institute for Space Studies



Ozone change over a solar cycle (Min to Max)

% change O3 per W/m2 TSI

## Solar-only regression (~70 cycles)

#### Goddard Institute for **Space Studies**

Solar cycle response of temperature (Lag 0)





### **TCADI Chemical impacts**

#### Goddard Institute for Space Studies



O<sub>3</sub> response photochemical and dynamic - strat & trop => increase of CH<sub>4</sub> oxidation

& photolytic reduction in upper strat H<sub>2</sub>O (~0.2 ppmv)

- => warms upper stratosphere
- => provides memory for longer term impact...
- Trop. warms, increases trop  $H_2O$  and strat input



### **Global Mean Response**







## **Surface Air Temperature**

Goddard Institute for Space Studies



Regression on SST ~0.1°C/(W/m<sup>2</sup> TSI)

Obs: ~0.1°C over solar cycle White et al (1997); Camp & Tung (2008)



### Zonal T responses depend on ocean/lag





#### Annular mode responses are complex





## Impact on North Atlantic Ocean?

Goddard Institute for Space Studies







Lagged regression to TSI ± 0.5 Sv over a solar cycle Max. +ve change 8-6 yr lag to TSI



# Summary of CMIP5 results

Goddard Institute for Space Studies

Clear enhancement of stratospheric 11yr signal w/ interactive chemistry

- Temperature over solar cycle ~ observations
- Hint of detectable humidity effect

Surface responses mixed and depend on oceanatmosphere coupling and/or climatology

Annular modes sensitive but noisy

Some hint of an ocean circulation response (unlikely to be detectable)



### **Potential Mechanisms - post-CMIP5**





### **TCADI/MATRIX: Aerosol microphysics**

Goddard Institute for Space Studies



Bauer et al., 2008, 2010, 2011



### **Production response to nucleation**

Goddard Institute for Space Studies



Impact of removing all nucleation





### Nucleation: Homogenous vs. ion-induced





| Total Nucleation:       | 4.92 x 10 <sup>26</sup> #/a | 6.5 Tg(H <sub>2</sub> SO <sub>4</sub> )/yr   |
|-------------------------|-----------------------------|----------------------------------------------|
| Ion induced nucleation: | 5.62 x 10 <sup>24</sup> #/a | 0.069 Tg(H <sub>2</sub> SO <sub>4</sub> )/yr |



### Impact on CDNC?





### **Potential Mechanisms**

Goddard Institute for Space Studies



Gray et al, 2010

#### Self-generating stratospheric Quasi-Biennial Oscillation

Tropical winds in lower stratosphere

#### Observations





#### 102 Layers + Model Top 0.002 hPa

Rind et al (2014)



Modelled Solar/QBO interactions

Goddard Institute for Space Studies



Solar Min



20 yrs constant TSI + LINOZ + fixed 1980s SST



### **Modelled Solar/QBO interactions**

Goddard Institute for Space Studies



Background T/circulation change due to solar max lengthens QBO



### **Modeled Mechanisms - CMIP6**

Goddard Institute for Space Studies



Gray et al, 2010