OODF: Optimized Opacity Distribution Functions for a New Generation of Solar and Stellar Brightness Variability Models

Miha Cernetic, Alexander I. Shapiro, Natalia A. Krivova, Sami K. Solanki, Veronika Witzke, Rinat V. Tagoirov

Max Planck Institute for Solar System Research
SOLVE group
cernetic@mps.mpg.de

Mar. 22, ’18
Exemplary case of Strömgren y filter

- Complex structure of spectrum due to lines
Complex structure of opacity

- Opacity varies by multiple orders of magnitude within 1Å
• Sort wavelength points by corresponding values of opacity

```
<table>
<thead>
<tr>
<th>Wavelength [Å]</th>
<th>log10 Opacity [cm⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
```

Sorted opacity

Miha Cernetic

2018 Sun-Climate Symposium

Mar. 22, '18
Approximating the sorted values

- Approximate opacity with a stepwise function
High resolution spectrum and ODF spectrum

- Use the stepwise opacity to calculate the flux

![Graph showing high resolution spectrum and ODF spectrum](image)

- 4 sub bins -> This two integrals differ by just 2%
High resolution spectrum and ODF spectrum

- Use the stepwise opacity to calculate the flux
- 4 sub bins -> This two integrals differ by just 2%
Generating ODFs

• Start with high resolution opacity
Generating ODFs

- Sort wavelength points by corresponding values of opacity; monotonically increasing opacity
- Integral is preserved by sorting
Generating ODFs

- All wavelength information within the bin is lost

![Graph showing Sorted opacity vs Wavelength index](image-url)

- Sorted opacity
- Wavelength index
- Log$_{10}$ Opacity [cm$^{-1}$]
Generating ODFs - Example with 10 uniform sub bins

- Approximate the sorted opacity with a step-wise function

![Graph showing sorted opacity and ODF](image-url)
Mean is skewed by extreme values
ODF performance analysis

- Synthesize spectrum using ODFs from 1000-9000Å with 10Å bins
- Compare the fluxes from the ODF spectrum with the high resolution spectrum in the bins
Analysis of different ODFs

- Uniform ODFs

![Graph showing the ratio of ODF to high resolution spectrum with different uniform sub bins.](image)
Analysis of different ODFs

- Nonuniform ODFs
- The last sub bin is crucial after 5000Å
Comparison of nonuniform sub bins

- Legend specifies sub bin sizes, starting with the first one
- Last sub bin is the same for all
Best sub bin combinations using 3 sub bins

- Sub bin distribution
- Sub bin distribution over Wavelength [Å]
- Ratio vs Wavelength [Å]

Legend:
- 3. sub bin
- 2. sub bin
- 1. sub bin
- Best combination
- Continuum only
- Kurucz
Best combinations of 3 sub bins for Strömgren y
Best combination of 3 sub bins for Strömgren y

Accuracy

Miha Cernetic
OODF
Mar. 22, ’18
Speedups in the case of Ströemgren

- Interval length: $\sim 1000\text{Å}$

High resolution: 80 points per Å $\sim 80\ 000$ points

ODF: 12 points per 10Å ~ 1200 points
- speedup 67 times

OODF: 3 points per 1000Å ~ 3 points
- speedup 25 000 times
Conclusions

• An efficient procedure for radiative transfer is timely for new generation of solar and stellar variability models.

• We developed a novel method for fast spectral synthesis.

• Can be tailored for different filters: Strömgren $b + y$, Kepler, PLATO and others.

• Significant speed up relative to standard methods by a factor of at least two orders of magnitude.
Conclusions

• An efficient procedure for radiative transfer is timely for new generation of solar and stellar variability models.

• We developed a novel method for fast spectral synthesis.

• Can be tailored for different filters: Strömgren $b + y$, Kepler, PLATO and others.

• Significant speed up relative to standard methods by a factor of at least two orders of magnitude.

Thank you for your attention!