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Cycle prediction with dynamos (1)
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The solar cycle/dynamo as a 2-steps process:

. T(+) =2 P(+H) = T(-) >P(-) = T(+)=>...
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Dynamo = kinetic to magnetic energy

Magnetohydrodynamical induction: flow of electrically conducting
fluid across magnetic fields, in collisionnally-dominated plasma regime:

%:Vx(uxB—anB)

Form magnetic energy equation by dotting B into above, and integrating
over volume of the sun/star:

2
@zi/ Bav=- s-ﬁdA—l/ JQdV—/ u-(J x B)dV
dt dt Jv 2ug 5V o V[ \' \ |
| Poynting flux | | Current density | | Lorentz force |
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Cycle prediction with dynamos
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USING DYNAMO THEORY TO PREDICT

THE SUNSPOT NUMBER DURING SOLAR CYCLE 21

Kenneth H. Schatten, Philip H. Scherrer, Leif Svalgaard and John M. Wilcox

Institute for Plasma Research, Stanford University, Stanford, California

Abstract. On physical grounds it is suggested
that the sun's polar field strength near a solar
minimum is closely related to the following
cycle's solar activity. Four methods of estima-
ting the sun's polar magnetic field strength near
solar minimum are employed to provide an estimate
of cycle 21's yearly mean sunspot number at solar
maximum of 140 £ 20. We think of this estimate
as a first order attempt to predict the cycle's
activity using one parameter of physical
importance based upon dynamo theory.

Polar Field Strength

Estimates of the polar magnetic field strength
near sunspot minimum may be obtained from the
shape of the corona at the time of solar eclipses,
or by the amount of flattening of the "warped
current sheet” at 1AU as obtained from inter-
planetary magnetic field measurements analysed in
accordance with the methods of Rosenberg and
Coleman (1969), A further and more direct
estimate of polar field strength is obtained by
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Predicting the strength of solar cycle 24 using a flux-transport

dynamo-based tool

Mausumi Dikpati,l Gruhana de Toma,l and Peter A. Gilman'
Received 13 November 2005; revised 28 December 2005; accepted 11 January 2006; published 3 March 2006

[1] We construct a solar cycle strength prediction tool by
modifying a calibrated flux-transport dynamo model, and
make predictions of the amplitude of upcoming solar
cycle 24. We predict that cycle 24 will have a 30-50%
higher peak than cycle 23, in contrast to recent predictions

by Svalgaard et al. and Schatten, who used a precursor

cause of various features observed in cycle 23. DDGAW
also demonstrated (their Figure 1) that the polar fields get
advected down to the shear layer at sunspot latitudes after
1721 years, depending on the assumed meridional flow
strength, instead of in just 5.5 years. Therefore the polar
fields from the past few cycles (n-1, n-2, n-3) rather than




Dynamo logic: a cartoon
[ Schatten et al. 1978, GRL, 5, 411 ]
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The solar cycle/dynamo as a 2-steps process:

L ST(+H) D P(+H) = T(-) S P(-) D T(+)=>...
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Cycle precursors
[ Munoz-Jaramillo et al. 2013 Apd 767, L25 ]

SSN is not a good precursor of dipole Dipole is a good precursor of SSN
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Choosing a dynamo model (1)

Basic cycle model

Saturation mechanism(s)

Fluctuation mechanism(s)

Differential rotation
Turbulent emf

Active region decay
Turbulent dissipation

Flux Transport mechanisms

Quenching of turbulent emf
Changes in large-scale flows
Changes in active region properties
MHD Instabilities

Turbulent effects

Fluctuations in large-scale flows
Stochasticity in active region properties
External forcing

Deterministic chaos
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Choosing a dynamo model (2)
[ Lemerle & Charbonneau 2017 ApJ 834, id133 |

Hybrid 2X2D kinematic Babcock-Leighton dynamo model, combining
a 2D surface flux transport (SFT) simulation and a 2D mean-field-like
flux transport dynamo (FTD) model;

FTD simulation generates active region emergences into SFT model,
which in turn provides surface boundary condition for axisymmetric
poloidal magnetic field for FTD;

Use genetic algorithm to fit model parameter to cycle 21 magnetogram
and active region emergence data (courtesy Wang & Sheeley);

Average cycle period set by (steady) meridional flow speed.

In similar vein see also: Yeates & Munoz-Jdaramillo et al. 2013, MNRAS
436, 3366; Miesch & Dikpati 2014, ApJ, 785, L8; Miesch & Teweldebirhan
2016, Adv. Sp. Res. 58, 1571.
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Choosing a dynamo model (3)
[ Lemerle & Charbonneau 2017 ApJ 834, id133 ]
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Surface dipole as precursor (1)

Dipole is a good precursor of SSN  SSN is not a good precursor of dipole
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Polar cap flux = unsigned flux of one large BMR; dipole
buildup sensitive to specifics of active region emergences
[ See Cameron & Schussler 2015, JGR 119, 680 ]
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« Rogue » active regions (1)
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« Rogue » active regions (2)

THE ASTROPHYSICAL JOURNAL LETTERS, 808:L28 (6pp), 2015 July 20 JianG, CAMERON, & SCHUSSLER

Figure 4. Example of a bipolar magnetic region that significantly weakened the axial dipole moment in the declining phase of cycle 23. Shown are SOHO/MDI
magnetic maps of the active region AR10696 taken 2004 November 5 (left panel) and 2004 December 2 (right panel, after one solar rotation, then denominated
AR10708), respectively. Positive magnetic flux is indicated in white, negative flux in black. Owing to its near-equator emergence, high tilt, and abnormal polarity
orientation in the north/south direction, the region provides a significant amount of negative flux that is transported over the equator (by supergranular random walk)
to the southern hemisphere. Through poleward advection (mainly by meridional flow) this flux eventually weakened the buildup of positive flux around the south pole
of the Sun, thus lowering the axial dipole moment.

] SORCE 2018 Lake Arrowhead 14
[ Jiang et al. 2015, ApJL 808:L28 ]




Surface dipole as precursor (3)

Experiment: reset random number generator setting properties
of emerging bipolar active regions.
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At activity maximum, fate of subsequent SSN cycle is not set;
At activity minimum, fate of subsequent SSN cycle is set .

[ Ongoing M.Sc. by F. Labonville, UdeM ]
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Ey [Arbitrary units]

Nonlinear cycle amplitude saturation

Magnetic energy vs time
starting from weak seed field
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A « textbook » model:
kinematic mean-field
dynamo with simple
« quenching » of the
turbulent EMF:

Both the linear
growth rate and
saturated amplitude
Increase with the
dynamo number.

Typical of many
classes of dynamos

SORCE 2018 Lake Arrowhead
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Cycle Amplitude

\

Stochasticity + Nonlinearities (1)

Subecritical <— - Supercritical
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If dynamo is operating
close to criticality,
small fluctuation in
dynamo number can
drive:

Large cycle amplitude
fluctuations,

and even intermittency
( Grand Minima )
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Cycle Amplitude

Stochasticity + Nonlinearities (2)

Subcritical <— - Supercritical

SORCE 2018 Lake Arrowhead

If dynamo is operating
close to criticality,
small fluctuation in
dynamo number can
drive:

Large cycle amplitude
fluctuations,

and even intermittency
( Grand Minima )
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Cycle Amplitude

Stochasticity + Nonlinearities (3)

Subcritical <— - Supercritical

[C]

Threshold on magnetic field
strength + stochasticity +
nonlinear modulation

= intermittency

An additional inductive
mechanism needed to push
dynamo back onto the
attractor characterizing

« normal » cyclic behavior.

Dual-dynamo systems !

A zoo of possible fluctuation
patterns on long timescales
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Latitude

Grand Minima (1)

[ Olgek et al. SolP, in prep. ]
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Grand Minima (2)

A mean-field dynamo model with a stochastic noise model for
the turbulent alpha-effect: strong hemispheric asymetries going
in and out of Grand Minima
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Pseudo—-SSN
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[ Passos et al. 2012, SolP 279:1-22 ]
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Grand Minima (4)
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[ Bushby 2006, MNRAS 371:772 ]

[ Simard et al. 2018, SolP, in prep. ]
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Grand Minima (5)

[ Augustson et al. 2015, ApJ 809, id149 ]
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A few take-home items

Next-cycle prediction going beyond « dipole-as-precursor »
must account for stochasticity of active region emergence
(dynamo models + data assimilation)

Finding precursor patterns for Grand Minima may be possible
If nature of dynamo saturation mechanism(s) is understood

In some classes of dynamo models, useful predictions on
timescales centennial or even longer may be possible;
interesting for climate !

We currently do not have a « concensus » basic dynamo
model for the sun, not for the physical mechanism(s)
regulating cycle amplitude and driving cycle variability.
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Surface dipole as precursor (4)

Consider the following two kinematic axisymmetric mean-field like dynamo
models, using a solar-like differential rotation and quadrupolar meridional
flow, and a simple algebraic quenching nonlinearity.

a0+CM, C,=+0.5 Ap=0.1 Rm=2500

T > P : alpha-effect

B-L C,=+5 An=1/300 Rm=840
[Ny

“\\

N

.

T > P : Babcock-Leighton
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Surface dipole as precursor (5)

In itself, does not
imply that the sun is
necessarily

a Babcock-Leighton
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Magnetic cycles (1)

o

EULAG-MHD solves anelastic MHD
equations in a thick, rotating stratified
fluid shell; includes stable fluid layer
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Despite strongly turbulent nature of induction, simulation develops a strong

and spatially well-organized axisymmetric magnetic field, antisymmetric about

equatorial plane and undergoing regular and hemispherically synchronized

polarity reversals.
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[ See also poster by Stejko et al. ]




MHD: extracting the turbulent EMF
[ Simard et al., Adv. Sp. Res. 58, 1522 (2016) ]

(A) a, /2 (B) ag (C) a4y /2 m/a
| Get these from simulation | - 3
E=(u x B
1 1
| Compute this |
v
Ei = a;j(Bj) + PBijrd;(Br) + higher order derivatives , 0

(D) 7, (E) 7, (F) g /107

| Get these by least-squares fit |

See also Augustson et al. 2015,
Apd 809, id149; Warneckg gt 4.
2016, on ArXiv




The « millenium simulation »
[ Passos & Charbonneau 2014, Astron. & Ap., 568, 113 ]
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MHD: alpha vs kinetic helicity
[ Simard et al., Adv. Sp. Res. 58, 1522 (2016) ]
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MHD: beta vs turbulent intensity
[ Simard et al., Adv. Sp. Res. §8, 1522 (2016)]
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Solar cycle prediction

Predicting what ?

Over what time frame ?

With what accuracy ?

Sunspot number

Interplanetary magnetic field
Radiative variability, SEP events
Flare/CME frequency/characteristics

Individual geoeffective events
Characteristics of next cycle
Supra-cycle timescales
Grand Minima/Maxima

The proverbial factor of 2
1% ...10 % ...
False Alarms vs Misses
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Magnetic cycle pulse of solar activity
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Can the solar cycle be predicted ?

Yes !

(... but your should not be too greedy ... )
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