<u>Possible Solar Cycle Responses of Eddy Diffusion in the Mesosphere and Lower Thermosphere</u> <u>as Inferred from SABER CO</u>₂

Cornelius Csar Jude H. Salinas [ccjsalinas@gmail.com]^{1,2}, Loren C. Chang^{1,2}, Jia Yue³, Liying Qian⁴, James Russell III⁵, and Martin Mlynczak⁶

- *Center for Astronautical Physics and Engineering, National Central University, Taoyuan City, Taiwan*
- 2 Graduate Institute of Space Science, National Central University, Taoyuan City, Taiwan
- 3 NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- 4 High Altitude Observatory, Natl. Center for Atmospheric Research, Boulder, Colorado, USA
- 5 Department of Atmospheric Sciences, Hampton University, Hampton, Virginia, USA
- 6 NASA Langley Research Center, Hampton, Virginia, USA

This work presents a possible solar cycle response of eddy diffusion in the MLT region. We utilize global-mean SABER CO₂ to first derive global-mean eddy diffusion coefficients (K_{zz}) that span at least one solar cycle. Then, a multiple-linear regression is used to determine the response of these K_{zz} profiles to the solar cycle. It is found that K_{zz} decreases during solar maximum and increases during solar minimum (hereafter referred to as a negative solar cycle response). These are compared with simulations from the Specified Dynamics – Whole Atmosphere Community Climate Model – eXtended (SD-WACCM-X). Model simulations also indicate a negative solar cycle response in K_{zz}. To explain these solar cycle responses in global-mean K_{zz}, we analyzed the solar cycle response of zonal-mean CO₂ as well as the role of K_{zz} per season. Results show that all seasons show consistently a negative solar cycle response in zonal-mean K_{zz}. We did further analysis on June solstice and found that the negative solar cycle response of K_{zz} can be attributed to anomalies in gravity wave propagation.