

SORCE — Important Factors of Concept and Development

Gary Rottman, Thomas Woods, Thomas Sparn Laboratory for Atmospheric and Space Physics University of Colorado, Boulder

Full Solar Spectrum

1/28/20

2020 Sun Climate Symposium

Typical NASA Flight Mission

First Adventure Solar Irradiance Adventure December 13, 1972

2020 Sun Climate Symposium

S©R©E

SME (1974 to 1989)

- Principal Investigator Mission (Charles Barth - PI)
- Science Team at LASP
- Soft touch Project Management by JPL
- Spacecraft development at BBRC
- Instruments built at LASP
- S/C testing at LASP and BBRC
- Operations and Control at LASP
- Data Processing
- Became core to LASP's DNA

Julius London, Col George Mount, Instrument Scientist George Lawrence, Instrument Scientist Tom Sparn, Operations and Control

UARS SOLSTICE

NASA's Preparation for EOS

S
 R
 Environmental Data Records

EOS Instruments were designed to measure the following environmental variables:

- Cloud Properties
- Surface Temperature
- Energy exchange between Earth and space
- Accumulation and ablation of snow
- Circulation of the oceans
- Structure and motion of sea ice; growth melting, and flow of glaciers
- Mineral composition of exposed soils and rocks
- Structure, composition and dynamics of the atmosphere winds lightning and precipitation
- Changes in stress and surface elevation around geological faults
- Exchange of energy, momentum and gases between the Earth's surface and atmosphere
- Biological activity on land and in near-surface waters

• Input of solar radiation and energetic particles to the Earth

EOS Beginning in 1989

Letter of acceptance in February 1989

- EOS budget of \$17B
- The Polar Platforms would carry 30 instruments
- Platform and instruments will be designed for a 15 year mission
- Data rates of 100 to 300 MBps +++++
- Stored on 9 track tapes constant building construction
- EOS SOLSTICE is a Flight of Opportunity (FOO)

New EOS Vocabulary (Re-.....)

- <u>Restructuring</u> in March 1991, budget **\\$**11B and 17 instruments
- <u>Rescoping</u> in 1992, budget **\$**8B
- <u>Rebaselining</u> in 1994, budget **\\$**7.2B
- Reshaping in 1995

MTPE EOS – 1995

Finding a Flight of Opportunity (FOO)

Second MOPITT flight opportunity - TBD

UARS Stellar Observations

Stars at 148 nm

UARS FUV, MUV, and NUV Solar Spectra

2020 Sun Climate Symposium

The ESR for the SIM Instrument

Two bolometers — each a 1 x 10 mm CVD diamond strip, blackened with NiP

Supported by a Kapton suspension and centered in an aluminum sphere to increase blackness and provide thermal isolation

EOS SOLSTICE with SIM

Revision #1 SOLSTICE Re-design (1996)

- UARS SOLSTICE (300 to 400 nm) stellar calibration provided ~1% accuracy >> solar variations
- Desired an instrument (300 nm to 2µm) with a single, figured prism —G. Mount helped develop the SIM
- Needed instrument with a reliable, stable detector G. Lawrence developed the miniaturized ESR
- Instrument should be self calibrating

MTPE EOS – 1995

Finding a Flight of Opportunity (FOO)

Second MOPITT flight opportunity - TBD

Revision #2

TSIM Announcement of Opportunity (1997)

- Science Objective: to continue TSI measurement
- TSIM instruments will likely be used by NPOESS
- (Optionally) provide two spectral measurements
 ~ 200 300 nm, and 1500nm
- MTPE PI-mode of Mission Management
 - End-to-end mission design (5-year)
 - Instrument development
 - Spacecraft acquisition
 - Command and control of spacecraft
 - Algorithm development

NPOESS Spectral Range

S RE Responding to NASA AO-97-MTPE-01

Challenges

- 1. TSIM was to be the second 5-year flight of ACRIM and NPOESS candidate
- 2. Could have "No-Bid", but the AO called for optional spectral channels
- 3. EOS SOLSTICE would be in jeopardy if a the successful bid included UV/SIM spectral measurements.
- 4. Required a quick development of a TSI device. LASP developed a working prototype in only a few months.
- 5. LASP proposal was one of two evaluated "Category 1" and funded for a Phase A study Finally prevailed.

SORGE The SORCE Mission

- LASP was selected to provide *TSIM* in 1999
- LASP was already well on its way to provide EOS SOLSTICE as a PI mode investigation
- NASA agreed to combine the two into a single *SORCE* Mission
- Bob Cahalan at GSFC was appointed as SORCE Mission Scientist
- LASP selected Orbital Sciences Corp to provide the SORCE spacecraft
- SORCE was launched January 25, 2003

SORCE

