Solar Activity and Responses Observed in Balmer Lines

S. Marchenko^{1,2}, S. Criscuoli³, M. DeLand^{1,2}, D. P. Choudhary⁴, G. Kopp⁵

¹ Science Systems and Applications, Inc. (SSAI), Lanham, MD, USA
 ² NASA Goddard Space Flight Center (GSFC), Greenbelt, MD, USA
 ³ National Solar Observatory, Boulder, CO, USA
 ⁴ San Fernando Observatory, California State University – Northridge, CA, USA
 ⁵ University of Colorado / LASP, Boulder, CO, USA

SSI variability: Solar cycle @ ~1 nm spectral resolution

Marchenko et al., 2019

Solar cycle 24: max SSI - min SSI

Solar cycle 24: line-activity indices

Marchenko & DeLand, 2014

Adapted from: Maldonado et al., A&A 627, A118 (2019)

Variability in Other Stars

Solar analog **HD 38858**: G2V, P~10.8y activity cycle (Flores et al. 2018), similar to the case of another solar analog, **HD 45184** (Flores et al. 2016)

Blue : high-activity - reference
Red : low-activity - reference

Overall, the chromospheric activity (H&K Call) level correlates with Hα line-core flux in **only 23%** (20% positive, 3% negative) of FGK stars (a sample of 271 stars: Gomes da Silva et al. 2014).

SSI Instrument Comparison

	ΟΜΙ	TROPOMI
Timeline	July 2004 - present	October 2017 - present
Spectral coverage	264-504 nm	270-2385 nm (270-495 nm contiguous)
Spectral resolution	0.41-0.63 nm	0.25-0.54 nm
Optical layout	Push-broom; 30-60 FOVs; spectral smile	Push-broom; 450 FOVs; spectral smile
Solar measurements	~daily	~daily
Traceable absolute calibration	None	None

OMI: Solar cycle 24

Marchenko et al., 2019

OMI: '13-day transits'

TROPOMI: '13-day transits'

The SDO/HMI images from May 12, 2019

The Fe I 6173.3 Å continuum intensity

The Fe I 6173.3 Å colored magnetogram

Images provided by: http://jsoc.stanford.edu/HMI/hmiimage.html

Modelling Overview

Full model:

- the wavelength- and heliocentric-angle-dependent models (quiet-Sun, active networks, plages, sunspots, etc. 8 components) are taken from Fontenla et al. (1999, 2006, 2011) and convolved with TROPOMI instrument transfer function;
- the models are weighted using the 'brightening' and 'darkening' NRLSSI2 factors (Coddington et al. 2016) for y2019, and the full-disk area-coverage stats (areas as in Fontenla & Harder 2005) from the PSPT (Rast et al. 1999) database;
- the weighted composites are averaged using the active-region geometry from SDO/HMI images.

Toy model: the quiet-Sun component (as above), with the line-wing intensities modulated by TSI.

Modelling – Sanity Check

Observed: disk-center (Brault & Neckel, 1987)

Model: disk-center

Balmer lines were synthetized under Non-Local Thermodynamic Equilibrium using the RH code (Uitenbroek 2001, Kowalski 2017).

Conclusions

Hβ, Hγ, Hδ line-activity indices closely (r = - (0.7-0.8)) and consistently (solar cycles 23, 24) follow **TSI changes** on the rotational (~months) timescales.

rotational modulation in $\mbox{H}\alpha\mbox{?}$

solar-cycle timescales ... ? (H α ~follows Call – Livingston et al. 2010)