Seeing Titan with VIMS infrared eyes during 13 years : from changing atmospheric features over the poles to global surface mapping

S. Le Mouélic, S. Rodriguez, C. Sotin, T. Cornet, B. Rousseau, R. Robidel, J. W. Barnes, R. H. Brown, B. J. Buratti, K. H. Baines, R. N. Clark, P. D. Nicholson, B. Seignovert, P. Rannou

The Visual and Infrared Mapping Spectrometer (VIMS)

- \rightarrow Imaging spectrometer with up to 64x64 pixels, in 352 spectral channels from 0.3 to 5.1 µm
- \rightarrow The surface is seen in 7 "windows"
- \rightarrow The spectral dimension can be used to detect and map the clouds
- \rightarrow ~60000 individual data "cubes"

Principal Absorbing Gases in Titan's Atmosphere

 (x,y,λ) : two spatial dimensions and one spectral dimension

1-Atmospheric features over the poles

First evidence of a northern polar cloud

• Griffith et al. (2005) \rightarrow detection of a vast polar ethane cloud at all longitudes, and latitudes from 56° up to 68°

• Best imaging conditions in Dec. 2006

Albedo at 2.8 μ m (Griffith et al., Science 2005)

Le Mouélic et al., Planet Space Sci. 60, 2012

Global distribution and temporal evolution of clouds

- Global study of the VIMS data set (Rodriguez et al., 2009, 2011, ...), mostly focused on tropospheric clouds
- Distribution in agreement with complementary ISS studies (Turtle et al., 2011, 2018)

Rodriguez et al., Nature, 2009

Our approach : Systematic cartographic survey of the poles

- Computation of global hyperspectral mosaics for 127 targeted flybys between 2004 and 2017
- Computation of global maps at diagnostic wavelengths

Le Mouélic et al., Icarus 311, 2018

• The north cloud system was already present in first flybys

 It vanished at the equinox, revealing progressively the underlying lakes

HCN spectral signatures in the north

Can be tracked down up to 2008 in our set of global maps,

R=4.78 μm

G=2.78 μm

B=2.01 μm

The south pole

• Clear skies at the begining of the mission

The south pole

- Clear skies at the begining of the mission
- An HCN-rich cloud appeared in 2012

The south pole

Le Mouélic et al., Icarus 311, 2018

Temporal evolution

• Evolution of the HCN signature with time

Summary of the poles survey

• Monitoring the seasonal evolution over half a Titan year...

2-Seeing the surface through the atmosphere : a cartographic challenge (nightmare ©?)

Building a global hyperspectral mosaic

- Sort of the cubes with low spatial resolutions used as background and high resolutions put ontop
- Set of filters to remove cubes acquired in extreme geometry
 - i < 80°
 - e< 80°
 - phase < 110°
 - airmass (1/cos i + 1/cos e) < 7
 - time exposure (avoid saturated pixels) : between 20 and 300 ms
- → mosaic at 32 pixels/degree (1.4 km/pixel) of the 256 spectral channels between 1 and 5 µm

Define series of processing steps to remove seams and emphasize spectral (compositional) variations

Global mosaic and corresponding geometry

 \rightarrow the seams are due to the varying observing geometry

• Absorption, scattering by gas/aerosols (i,e,phi,lambda, airmass)

- Aerosol and surface photometric function
- Residual calibration artifacts (wavelength shift)
- Temporal changes (clouds/ surface/atmosphere) ...

Mosaic at 5 μ m : the easiest case

• Almost no aerosol scattering \rightarrow only needs to be corrected from surface photometry

Mosaic at 5 μ m : the easiest case

• Divided by a Lunar lambert and rayleigh phase function (Cornet et al., 2012) $A \mu 0/(\mu 0 + \mu)P(g) + (1 - A)\mu 0$ with A=0.285

More complicated case: the 2.03 µm window

Uncorrected map

2.03 μ m window divided by photometric fonction

• Map corrected from surface photometry only (③)

2.03 μm window minus band wings divided by photometric fonction

• Map corrected from atmosphere & surface photometry

Comparison with ISS (2015 public basemap)

Combining wavelengths to produce RGB false color composites

- Map corrected from surface photometry & atmosphere
- R= 2 μ m, G= 1.59 μ m, B=1.27 μ m corrected from scattering & geometry

The most powerful tool in surface mapping: using band ratios...

R=1000 nm, G=900 nm, B=415 nm

R= 750/415 nm, G=750/950 nm, B=415/750 nm

The band ratios remove albedo variations and the local slopes effects and better emphasize subtle spectral variations than RGB composites of single bands.

• Drawback : Extremely sensitive to calibration residuals (& atmospheric effects on Titan)

First try of band ratios on the global data set

• R=1.59/1.27, G=2.03/1.27, B=1.27/1.08 μm : $\ensuremath{\mathfrak{G}}$

 \rightarrow Is this modern art ? Not usable for science...

After a lot of head scratch...

-

- R=1.59/1.27, G=2.03/1.27, B=1.27/1.08 μm
- Refinement of the wavelength selection and calibration ⊕ brown colors=dune fields

After a lot of head scratch...

- R=1.59/1.27, G=2.03/1.27, B=1.27/1.08 μm
- Refinement of the wavelength selection and calibration
- Additional atmospheric empirical cleaning filter (dependence with airmass) - ^(C)

Zoom on the Huygens site...

VIMS

- Some places are well imaged
- Some others will require a new spacecraft...

Orthographic views

Thanks for your attention...

...waiting for new Titan images

Some advertising :

- Ever wanted to walk on Titan ? : Come to see the Virtual Reality experience...
- VIMS data portal at LPG : https://vims.univ-nantes.fr

Cassini VIMS Data Portal

by the Laboratoire de Planétologie et Géodynamique (LPG) of Nantes

data portal at LPG

vims.univ-nantes.fr

This website provides an overview of the <u>Cassini VIMS</u> dataset acquired between October 2004 and September 2017. For now, only the public targeted icy moons flybys are available. You can already dive into these data by clicking on the flybys you are interessed on:

litan	Enceladus		Dione	Khea		Phoebe	Hyperion		lapetus
.T0	TA	TB	TC	T3		TS	716	17	T8
-79	710	T11	T12	713	114	TIS	716	T17	T18
T19	T20	721	T22	723	124	125	T26	T27	T28
T29	T30	TSI	T32	T33	T34	735	T36	T37	T38
139	140	141	142	143	144	145	146	147	148
T49	150	T53.	T52	T53	T54	755	T58	T57	TSB
T59	760	T61	T62	T63	T64	T65	T66	T67	T68
159	170	171	т/2	173	174	175	176	177	TZB.
779	TBO	T81	Т82	TBI	T84	7.85	T86	T87	T88
T89	790	T91.	T%2	193	194	195	796	T97	798
799	TIOU	T101	1102	T103	TION	T105	1106	1107	1108
T109	T110	TIT	T112	T113	T114	T115	TIIG	T117	T118
	T119	1120	T121	T122	1128	T124	7125	1126	

(work done by B. Seignovert)