Uncovering the influence of surface and subsurface hydrology on Titan's climate system

Juan M. Lora

Sean P. Faulk & Jonathan L. Mitchell, UCLA P. Chris D. Milly, USGS

How Much Methane Is in Titan's Climate System?

~10³–10⁴ GT carbon

J.M. Lora • Cassini Science Symposium 2018 • August 15, 2018 • Boulder, Colorado 2

~4x10⁴ GT carbon

Lorenz et al. (2018)

The Methane Inventory in Contact with the Atmosphere Strongly Impacts the Climate

Agrees with 2D simulations of different total methane reservoirs (Mitchell 2008, JGR 113)

J.M. Lora • Cassini Science Symposium 2018 • August 15, 2018 • Boulder, Colorado 3

Simulations with the Titan Atmospheric Model (TAM; Lora et al. 2015, Icarus 250)

The Methane Inventory in Contact with the Atmosphere Strongly **Impacts the Climate**

Cloud observations from Cassini and ground-based instruments

The Most Successful Idealized Surface Methane Configuration Is One With Polar "Wetlands"...

J.M. Lora • Cassini Science Symposium 2018 • August 15, 2018 • Boulder, Colorado 5

Faulk et al. (2017)

The Most Successful Idealized Surface Methane Configuration Is One With Polar "Wetlands"...

Time (Titan years)

Faulk et al. (2017)

...Which Produces Intense High Mid-Latitude Storms that Correlate With Observed Geomorphic Features

J.M. Lora • Cassini Science Symposium 2018 • August 15, 2018 • Boulder, Colorado 7

Birch et al. (2016)

Faulk et al. (2017)

Titan's Polar Regions Are Low-Lying; Equator Is Higher Elevation

J.M. Lora • Cassini Science Symposium 2018 • August 15, 2018 • Boulder, Colorado 8

UCLA

Does This Imply Poleward Surface/Subsurface Flow? Need a Self-Consistent Hydrologic Model to Address Such Questions

Development of a coupled atmosphere-surface hydrology climate model

Does This Imply Poleward Surface/Subsurface Flow? Need a Self-Consistent Hydrologic Model to Address Such Questions

Fully Coupled Simulations Quickly Reproduce a Moist-Poles, Dry-**Equator Climate**

Simulations initialized from spun-up atmosphere plus a dry surface and 1200 m methane table

Fully Coupled Simulations Quickly Reproduce a Moist-Poles, Dry-**Equator Climate**

Simulations initialized from spun-up atmosphere plus a dry surface and 1200 m methane table

Fully Coupled Simulations Quickly Reproduce a Moist-Poles, Dry-**Equator Climate**

Simulations initialized from spun-up atmosphere plus a dry surface and 1200 m methane table

Infiltration, Runoff, and Subsurface Seepage Are Important **Contributors to the Surface Moisture Budget**

Simulations initialized from spun-up atmosphere plus a dry surface and 1200 m methane table

Infiltration, Runoff, and Subsurface Seepage Are Important **Contributors to the Surface Moisture Budget**

Simulations initialized from spun-up atmosphere plus a dry surface and 1200 m methane table

15 J.M. Lora • Cassini Science Symposium 2018 • August 15, 2018 • Boulder, Colorado

P-E-I+R+S

Infiltration, Runoff, and Subsurface Seepage Are Important **Contributors to the Surface Moisture Budget**

Simulations initialized from spun-up atmosphere plus a dry surface and 1200 m methane table

P-E-I+R

P-E-I+R+S

UCLA

Sensitivity Simulations Indicate the Importance of Subsurface Methane Transport

Sensitivity Simulations Indicate the Importance of Subsurface Methane Transport—Surface Runoff Alone Does Not Reproduce Obs.

Coupled Simulations Suggest a Methane Cycle Involving Transport in the Atmosphere, on the Surface, and in the Subsurface

TAM + hydrology

Coupled Simulations Suggest a Methane Cycle Involving Transport in the Atmosphere, on the Surface, and in the Subsurface

TAM + hydrology

Conclusions

- Titan's topography and surface liquid distribution cycle
- We have developed a coupled surface—atmosphere model with fully self-consistent hydrology and net precipitation
- This coupled model quickly reproduces observed surface liquid distributions, as well as a moist-polar/dryequatorial climate
- Methane infiltration, surface runoff, and seepage from the subsurface (as well as ground-methane evaporation) are important terms in the surface moisture budget
- Sensitivity simulations indicate an important role for the transport of liquid methane in the subsurface, which occurs globally in our model
- Ongoing and future work are needed to refine/constrain physical parameters of the hydrology model
 Future work will also include the orographic impact of topography on the atmosphere to address an
- Future work will also include the orographic impa additional potential feedback

• Titan's topography and surface liquid distribution suggest a hydrology component to the methane hydrologic

Titan Atmospheric Model (TAM)

GCM simulations of Titan's middle and lower atmosphere and comparison to observations

Juan M. Lora^{a,*}, Jonathan I. Lunine^b, Joellen L. Russell^a

Icarus 250 (2015) 516–528	
nature geoscience	

Regional patterns of extreme precipitation on Titan consistent with observed alluvial fan distribution

S. P. Faulk*, J. L. Mitchell, S. Moon and J. M. Lora

NATURE GEOSCIENCE | ADVANCE ONLINE PUBLICATION

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Topography Coupled to the Atmosphere Impacts Average Precipitation

J.M. Lora • Cassini Science Symposium 2018 • August 15, 2018 • Boulder, Colorado 23

UCLA

