Seasonal effects in Titan's stratosphere analyzed through Global Climate Modelling J.Vatant d'Ollone, S.Lebonnois, M.Sylvestre, S.Vinatier, J.Burgalat Cassini Science Symposium - August 15th, 2018 - Boulder CO ■ jan.vatant-dollone@Imd.jussieu.fr - LMD/IPSL, Sorbonne Université, Paris

TABLE OF CONTENTS

- Motivations and background Titan seasonal evolution
- 2 Modelling stratosphere within IPSL Titan's GCM
 - Recent improvements in Titan model
 - Consequences

3 Results - Seasonal effects in the stratosphere

- Low stratosphere
- Seasonal thermal structure
- Seasonal enrichment variations
- Conclusions and outlooks
 - What's next?
 - Take-Home

化原料 化原料

SEASONAL EVOLUTION

Courtesy : S. Vinatier

J. VATANT D'OLLONE (LMD / IPSL)

TITAN'S STRATOSPHERE GCM

August 15th, 2018

イロト イヨト イヨト イヨト

3 / 29

- 12

SEASONAL EVOLUTION - WINTER POLAR VORTEX

J. VATANT D'OLLONE (LMD / IPSL)

TITAN'S STRATOSPHERE GCM

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで AUGUST 15th, 2018

Recent Works - South Polar Vortex

TITAN'S STRATOSPHERE GCM

August 15th, 2018 5 / 29

RECENT WORKS - CONDENSATES AT SOUTH POLE

Courtesy : S. Vinatier

August 15th, 2018

TABLE OF CONTENTS

- 2 Modelling stratosphere within IPSL Titan's GCM
 - Recent improvements in Titan model
 - Consequences

3 Results - Seasonal effects in the stratosphere

- Low stratosphere
- Seasonal thermal structure
- Seasonal enrichment variations
- 4 Conclusions and outlooks
 - What's next?
 - Take-Home

J. VATANT D'OLLONE (LMD / IPSL)

7 / 29

(人間) とうき くうり

LMD TITAN'S GCM SUFFERED FROM LIMITATIONS

- Temperature profiles diverged at the ceiling of the model
- Long-term runs lead to a strong stability zone, "stucking" the Hadley cell
- Limited vertical mixing of stratospheric compounds

J. VATANT D'OLLONE (LMD / IPSL)

August 15th, 2018

NEW SET-UP FOR TITAN GCM

- Correlated-k scheme with CH₄, C₂H₆, C₂H₂ and HCN from HITRAN 2012 (+ Reims GSMA methane line database in 7900-12000 cm⁻¹ range) + Collision-induced absorption (N₂, H₂ and CH₄)
- Aerosol mean opacity profile based on constraints retrieved from DISR data [Lavvas et al., 2010]
- Photochemical solver (Lebonnois et al. 2001, Crespin et al. 2008) up to 1300 km, 44 species (H,C,N) and 344 photochemical reactions

So far it implied to decouple radiative transfer from microphysics (no latitudinal or temporal variations) ...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

RADIATIVE TRANSFER EXTINCTIONS (M^{-1}) UPDATE

J. VATANT D'OLLONE (LMD / IPSL)

TITAN'S STRATOSPHERE GCM

August 15th, 2018

CONSEQUENCES

MAIN CONSEQUENCE - SIMULATED STRATOPAUSE

J. VATANT D'OLLONE (LMD / IPSL)

AUGUST 15th, 2018

э

TABLE OF CONTENTS

- MOTIVATIONS AND BACKGROUND TITAN SEASONAL EVOLUTION
- MODELLING STRATOSPHERE WITHIN IPSL TITAN'S GCM
 Recent improvements in Titan model
 - Recent improvements in Titan
 - Consequences

3 Results - Seasonal effects in the stratosphere

- Low stratosphere
- Seasonal thermal structure
- Seasonal enrichment variations
- 4 Conclusions and outlooks
 - What's next?
 - Take-Home

J. VATANT D'OLLONE (LMD / IPSL)

TITAN'S STRATOSPHERE GCM

A B A A B A

AUGUST 15th, 2018

-

LOW STRATOSPHERE

J. VATANT D'OLLONE (LMD / IPSL)

TITAN'S STRATOSPHERE GCM

August 15th, 2018

3

Low stratosphere seasonal evolution

- Pronounced asymetry between ingress and egress of polar winter consistent with CIRS observations : It's a (cold) trap !
- Under $\simeq 25$ mbar the seasonal cycle is damped due to radiative timescales reachin 1 Titan year (cf *Bézard et al. 2018*).

Sylvestre et al., Submitted to Icarus

J. VATANT D'OLLONE (LMD / IPSL)

August 15th, 2018

WINTER "POLAR SHOULDER"

- Observed in radio-occultations (Schinder et al. 2012)
- Quite reproduced in simulations without latitudinal or temporal variations of composition !
- Drived by polar night lack of insolation (symmetric wrt solstice) and radiative timescale transition zone.
- Presence of clouds would certainly sharpen this destabilization and enhance the "trap" in cold state.
- Are other Cassini radio-science
 profiles available ?→ < ≥→ > ≥ → <>

SEASONAL BEHAVIOUR OF THE THERMAL STRUCTURE

August 15th, 2018

э

THERMAL STRUCTURE SUM-UP

- :-) Low-latitudes thermal profiles quite correct (with stratopause !)
- :-(Lack of winter polar cooling since no retroaction of haze accumulation
- :-(Too warm and too low polar winter stratopause compared to CIRS data
- :-(Induced circulation weaker than expected and limited in vertical extension during the heart of winter
- :-) Low stratosphere destabilization ("polar shoulder") quite well reproduced

17 / 29

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

SEASONAL BEHAVIOUR OF HCN

August 15th, 2018

э

18 / 29

・ロ・・ (日・・ 日・・ (日・

Towards a high-altitude cloud?

- Unlike *Hourdin et al. 2004* variations of temperature now impact condensation.
- *De Kok et al. 2014* : HCN ice at 300 km
- *Vinatier et al. 2018* : C6H6 ice at 250 km
- With further cooling (polar night haze, cloud condensates) and better trace compounds enrichment, we could maybe reach 300 km !
- → We need a coupled microphysical model !

J. VATANT D'OLLONE (LMD / IPSL)

TITAN'S STRATOSPHERE GCM

August 15th, 2018 19 / 29

Seasonal behaviour of C2H2

August 15th, 2018

イロト イヨト イヨト イヨト

20 / 29

э

Seasonal behaviour of C6H6

August 15th, 2018

э

21 / 29

・ロ・・ (日・・ 日・・ (日・

SEASONAL BEHAVIOUR OF HC3N

August 15th, 2018

э

22 / 29

イロト イヨト イヨト イヨト

SEASONAL ENRICHMENT VARIATIONS

- :-) Amplitude of variations in good agreement with CIRS data.
- :-) Hints of high-altitude condensation.
- :-(Reversal of polar enrichment occuring too early compared to the observation because of the limited vertical extension of the circulation due to lack of polar night haze cooling.
- :-) Small return cell above summer pole trapping some compounds.
- ?? High altitude equatorial depleted C6H6.
- ?? No real enrichment of HC3N above pole? Linked to very short lifetime?
- :-) High-altitude variations indicate that above winter pole, abundances of photochemical products increase after spring equinox around 600-800 km altitude. With circulation more extended above 350 km, this could be related to the increase observed in the polar enrichment after the equinox.

J. VATANT D'OLLONE (LMD / IPSL)

TITAN'S STRATOSPHERE GCM

August 15th, 2018

HADLEY CELL VERTICAL EXTENSION?

• • • • • • • • • • •

TITAN'S STRATOSPHERE GCM

August 15th, 2018

→

3

TOWARDS AN INCREASED VERTICAL EXTENSION

Motivations

• With the improved temperature profiles, Hadley cell could now vertically extent

• But ...

- As long as we lack polar cooling vertical circulation in winter will be limited
- Thin layer approximation ! We need to use the deep atmosphere core (at 500 km $\frac{g}{g_0} \simeq 0.6$)!
- Ånd also, non-LTE processes, illuminance over the poles ...

August 15th, 2018

WHAT'S NEXT?

- A new bulk microphysical model for the haze (work in progress with Reims team)
 - ✓ Transport of the microphysical moments
 - Radiative coupling
 - Activate clouds formation
- Radiative impact of trace compounds variations (work in progress)
- Run simulations with vertical increased extension (implementation of a deep atmosphere core for more accuracy)

26 / 29

・ 同下 ・ ヨト ・ ヨト

Key take-home messages

- Radiative transfer scheme is now correct, giving an improved thermal structure
- Lack of cooling above winter poles as long as no retroaction of haze accumulation \Rightarrow still limited vertical extension of circulation
- Once we have vertical extension of the Hadley cell \Rightarrow full view of seasonal transport and enrichment of gazes and aerosols!
- "Polar shoulder" destabilization reproduced in the low stratosphere without radiative feedback of haze or trace compounds!
- Enrichment in trace compounds (HCN,C2H2,C2H6 ...) in good agreement with CIRS data except for the delay at circulation reversal.
- High altitude condensation of HCN and C6H6 in the winter pole yet not as much as in the observations.

Thanks for your attention !

Images courtesy : NASA/JPL

J. VATANT D'OLLONE (LMD / IPSL)

TITAN'S STRATOSPHERE GCM

AUGUST 15th, 2018 28 / 29

TEMPERATURE LATITUDINAL CONTRAST

- This study
- Without haze retroaction, temperature latitudinal contrast is fainter than in the observations (*Lebonnois et al, 2009*)
- Too weak wind shear according to thermal wind equation in the troposphere.