Saturn's ionosphere: Lectron density altitude profiles and ring shadowing effects from the RPW/S/LP

Lina Z. HADID

M. W. Morooka, J.-E. Wahlund, A. M. Persoon, D. J. Andrews, O. Shebanits, W. M. Farrell, W. S. Kurth, H. Waite, R. Perryman, L. Moore, M. M. Heddman, T. E. Cravens, N. J. T. Edberg, E. Vigren, A. Nagy, A. I. Eriksson

> Cassini Science Symposium, Boulder 13-17 August 2018

INSTITUTET FÖR RYMDFYSIK Swedish Institute of Space Physics

Proximal orbits overview

Saturn's topside ionosphere profile (1st proximal orbit)

First in-situ detailed detection!

- LP measurements in agreement with:
 - → 20 Hz LP current densities
 - → Upper cut-off frequency of the whistler waves.
- Dominance of H⁺
- Ring shadow effect observed:
 - \rightarrow B- & A- ring optically thick
 - → No effect observed from the Cand D- rings.
 - → Cassini division less opaque to the EUV ionization.
- Local photoionization of the ionospheric plasma

Dense and cold ionosphere!

 \rightarrow N_e > 1000 cm³

$$\rightarrow$$
 T_e ~ 0.1 eV

Wahlund et al., Science, 2017

Saturn's topside ionosphere profile (all the proximal orbits)

- Large variability in n between the orbits and within one orbit
- North/south asymmetry because of the A and B ring shadows in the southern hemisphere

Saturn's topside ionosphere profile (all the proximal orbits)

- Large variability in n between the orbits and within one orbit
- North/south asymmetry because of the A and B ring shadows in the southern hemisphere

Electron density altitude profiles and D ring electrodynamic interacttion

L. Z. Hadid, M. W. Morooka, J-E. Wahlund, A. M. Persoon, D. J. Andrews, O. Shebanits, W. S. Kurth, E. Vigren, N. J. T. Edberg, A. F. Nagy, A. I. Eriksson (2018a). Saturn's ionosphere:Electron density altitude profiles and D ring interaction from the Cassini Grand Finale. Geophysical Research Letters, DOI: 10.1029/2018GL078020

Saturn's topside ionosphere profile (all the proximal orbits)

We limit the analysis to near equatorial latitudes [-15°,+15°] in order to exclude the shadowing effects

n altitude profiles and D ring electrodynamic interaction

- NH and SH: increase of n_{ρ} (x100) with increasing altitude
- NH: more organized n profiles
- SH: electrodynamic type of interaction with the D ring

- Similar profiles between the average profile and the Final Plunge
- Evidence of three different layers : P, D and C
- Scale height estimations : consistent with previous estimation from radio occultation and from the wave frequency characteristics [Persoon +, GRL, 2018]

- Similar profiles between the average profile and the Final Plunge
- Evidence of three different layers : P, D and C
- Scale height estimations : consistent with previous estimation from radio occultation and from the wave frequency characteristics [Persoon +, GRL, 2018]

- Similar profiles between the average profile and the Final Plunge
- Evidence of three different layers : P, D and C
- Scale height estimations : consistent with previous estimation from radio occultation and from the wave frequency characteristics [Persoon +, GRL, 2018]

- Similar profiles between the average profile and the Final Plunge
- Evidence of three different layers : P, D and C
- Scale height estimations : consistent with previous estimation from radio occultation and from the wave frequency characteristics [Persoon +, GRL, 2018]

- Similar profiles between the average profile and the Final Plunge
- Evidence of three different layers : P, D and C
- Scale height estimations : consistent with previous estimation from radio occultation and from the wave frequency characteristics [Persoon +, GRL, 2018]

A and B ring shadowing effects on Saturn's ionosphere

L. Z. Hadid, M. W. Morooka, J-E. Wahlund, L. Moore, T. E. Cravens, M. M. Hedman, N. J. T. Edberg, E. Vigren, J. H. Waite , R. Perryman, W. S. Kurth, W. M. Farrell, A. I. Eriksson (2018b). Ring shadowing effects on Saturn's ionosphere: Implications for ring opacity and plasma transport. Geophysical Research Letters, accepted.

Ring shadows

B ring shadow Cassini Divsion A ring shadow

Langmuir probe total ion current

Total DC ion current projected on Cassini's trajectory

Shadows boundaries vs A and B rings boundaries

A ring:

Projected A ring boundaries are consistent with the theoretical one.

B ring:

- Observed outer edge of the B ring consistent with the theoretical one.
- Observed inner edge of the B ring not consistent with the theoretical one.
- Total current starts to decrease around the inner edge of the B ring.

→ Plasma transport of H⁺ from unshadowed regions to shadowed regions: longer chemical lifetime of H+ compared to H_3^+ and H_2^+

 $\rightarrow\,$ Plasma transport from the D and C rings ?

Shadows boundaries vs A and B rings boundaries

A ring:

Projected A ring boundaries are consistent with the theoretical one.

B ring:

- Observed outer edge of the B ring consistent with the theoretical one.
- Observed inner edge of the B ring not consistent with the theoretical one.
- Total current starts to decrease around the inner edge of the B ring.

→ Plasma transport of H⁺ from unshadowed regions to shadowed regions: longer chemical lifetime of H+ compared to H_3^+ and H_2^+

 $\rightarrow\,$ Plasma transport from the D and C rings ?

Shadows boundaries vs A and B rings boundaries

A ring:

Projected A ring boundaries are consistent with the theoretical one.

B ring:

- Observed outer edge of the B ring consistent with the theoretical one.
- Observed inner edge of the B ring not consistent with the theoretical one.
- Total current starts to decrease around the inner edge of the B ring.

→ Plasma transport of H⁺ from unshadowed regions to shadowed regions: longer chemical lifetime of H+ compared to H_3^+ and H_2^+

 $\rightarrow\,$ Plasma transport from the D and C rings ?

Conclusions

Electron density altitude profiles and D ring interaction from the Cassini Grand Finale

- Evidence of an electrodynamic type of interaction between the topside ionosphere and the D ring in the southern hemisphere.
- Evidence of a layered electron density profile characterized by at least a diffusive and a chemical equilibrium region
- In-situ observation of the main ionospheric peak in the final plunge around 1550 km.

L. Z. Hadid +, GRL, 2018a

Ring shadowing effects on Saturn's ionosphere:

Variations in the B ring shadowing signature below 4000 km:

- ✓ Plasma transport of H⁺ from un-shadowed regions \rightarrow longer lifetime of H⁺ compared to H₃⁺
- Plasma transport from/to C and D rings

L. Z. Hadid +, GRL, 2018b

Total ion current versus altitude and normal optical depth

I_{DC,tot} inversely proportional to the altitude and the normal optical depth

High altitudes >7000 km \rightarrow plamasphere \rightarrow low densities $\sim 10 \text{ cm}^{-3}$ $\rightarrow I_{DC,tot} \approx I_{se} + I_{ph}$ \rightarrow mapping of the CD and the A ring

Low altitudes < 4000 km \rightarrow ionosphere \rightarrow high densities >100 cm⁻³ \rightarrow I_{DC,tot} \approx I₀ \rightarrow decrease in I_{DC,tot} below the B ring

