

EVOLUTION OF AEROSOLS IN TITAN'S IONOSPHERIC PLASMA An Experimental Simulation

A. Chatain^[1,2], N. Carrasco^[1], N. Ruscassier^[3], O. Guaitella^[2] ^[1] LATMOS, CNRS, Université Versailles St Quentin, Sorbonne Université, Guyancourt, France ^[2] LPP, CNRS, École polytechnique, Sorbonne Université, Université Paris Sud, Palaiseau, France ^[3] LGPM, CNRS, École Centrale-Supélec, Gif-sur-Yvette, France

audrey.chatain@latmos.ipsl.fr

INTRODUCTION: EVOLUTION OF ORGANIC AEROSOLS IN PLASMA ENVIRONMENT

Titan is a moon of Saturn where climate and surface phenomena are governed by the presence of organic aerosols. Cassini spacecraft, which observed Titan from 2004 to 2017, discovered that such aerosols start forming above 1200km, in the ionosphere [1]. At this altitude the atmosphere is a N₂-CH₄-H₂ dusty plasma (in respective proportions 98.4%-1.4%-0.2%).

Aerosols cross the entire ionosphere when falling down to the surface of Titan. In such a **reactive environment**, these organic grains are **likely** to evolve, physically and/or chemically, through interactions with electrons, ions, radicals and excited species. Here we experimentally **simulate** the exposure of Titan's aerosols to plasma and characterize the evolutions of the sample by *in situ* **IR transmission spectroscopy**.

SAMPLE: TITAN THOLINS

PAMPRE: Analogs of Titan's aerosols ("tholins") are formed in the reactor PAMPRE at LATMOS under conditions described in ^[2].

Pellet: Tholin grains are then pressed with KBr under 5 tons pressure to obtain thin pellets not totally opaque in IR.

EXPOSURE: N₂-H₂ DC DISCHARGE

Gas flow: we used N₂ and N₂ with 1% H₂ to see the influence of H₂. Even if present in Titan's ionosphere, CH₄ is not injected here to prevent the formation of new particles during the exposure. The pressure is 1 to 4mbar.

Discharge: a DC glow discharge is ignited in a tube of 2cm in inner diameter. The current is kept constant to 20mA.

FTIR: the reactor fit inside the sample compartment of a FTIR (Bruker V70). IR transmission spectroscopy is realized *in situ* through the pellet under plasma exposure.

PHYSICAL EROSION

WITH NAKED EYES

Pellets become whiter and rougher:

preferential erosion of the brown organic material • stronger erosion with H_2

Before exposure

0V

WITH SCANNING ELECTRON MICROSCOPY (SEM)

CHEMICAL EVOLUTION: BY IR TRANSMISSION SPECTROSCOPY

After normalization on the maximum, relatively:

- ② disappears quickly
- ④ appears progressively

Band attributions

Evolution of relative area of bands

Before exposure

After 4h exposure (N₂-H₂ ; 4mbar)

After 4h exposure (N₂-H₂; 1.3mbar)

■ black organic material is **removed** from the surface contrarily to bigger KBr grains. ■ at **low pressure**: some tholins are left and appear **rougher**.

WITH IR TRANSMISSION SPECTROSCOPY

absorption decreases with exposure time

Evolution of 'CH'/'NH' area ratio

 \Rightarrow organic absorbent material is removed from the pellet

3 timescales: 1min, 20min and <10h \implies quick and slow erosion processes

■ bands proportionally **evolve at different speeds** : [III] ↘ quickly, [I] ↘ more at the 20min timescale, whereas [0] mainly \searrow with a longer characteristic time.

4 mbar

0.6

■ ratio 'CH' / 'NH + OH' bands

 $N_2 - H_2$ 4 mbar Time of plasma (hours)

CONCLUSIONS AND PERSPECTIVES

• **physical and chemical modifications seen** \Rightarrow tholins are altered by plasma

(roughness, relative evolution of major bands, changes in unsaturated functions, complexification of chemical environment, deoxydation...)

• the addition of H_2 in N_2 intensifies the evolution of tholins

(higher erosion speed at τ =20min for CN and NH bands, β -unsaturated -CN band growth, stronger deformation of CH bands...)

 \mapsto what to expect on Titan: same ionization ratio, pressure $10^{4-7}x$ lower, particles 100x smaller, timescale >1000 larger ^[4]: compensation? \implies possible erosive effect + chemical modifications induced by N₂-H₂ plasma species

••• to go further: evolution of gas species after interaction with the aerosols?

REFERENCES

[1] Waite J.H. et al. "The process of tholin formation in Titan's upper atmosphere." Science 316.5826 (2007): 870-875.

[2] Sciamma-O'Brien E. et al. "Titan's atmosphere: An optimal gas mixture for aerosol production?" Icarus 209.2 (2010): 704-714.

[3] Kim, Sang J., et al. "Retrieval and tentative identification of the 3µm spectral feature in Titan's haze." *Planetary and Space Science* 59.8 (2011): 699-704.

[4] Lavvas P. et al. "Aerosol growth in Titan's ionosphere." *PNAS* 110.8 (2013): 2729-2734

NC acknowledges the financial support of the European Research Council (ERC Starting Grant PRIMCHEM, Grant agreement no. 636829).

AC acknowledges ENS Paris-Saclay Doctoral Program.