ELECTRON ACCELERATION DURING RECONNECTION EVENTS

OBSERVATIONS OF TURBULENCE AND LARGE ELECTRIC FIELDS ASSOCIATED WITH MAGNETIC RECONNECTION IN EARTH’S MAGNETOTAIL

LASP REU 2019
EMMA STOHLMAN1,2

MENTORS: NARGES AHMADI1, FREDERICK WILDER1, ROBERT ERGUN1

(1) Laboratory for Atmospheric and Space Physics, University of Colorado Boulder
(2) Department of Physics, Illinois Institute of Technology

This research was supported by the National Science Foundation REU program, Award #1659878.
EARTH’S MAGNETOTAIL
RECONNECTIONS
MAGNETOSPHERIC MULTISCALE MISSION (MMS)
HALLMARKS OF RECONNECTION

- Electron acceleration to energies higher than 100 keV
- Turbulence
- Spikes of J dot E
- Ion flow reversal in x direction
- Magnetic field reversal in z direction

\[- \frac{\partial u}{\partial t} = \nabla \cdot \mathbf{S} + \mathbf{J} \cdot \mathbf{E}\]
RECONNECTION EVENTS

July 26th, 2017 06:58 Event

July 26th, 2017 07:26 Event
July 26th, 2017 06:58 Event

Ion flow reversal in x direction

July 26th, 2017 07:26 Event

Ion flow reversal in x direction
RECONNECTION EVENTS

July 26th, 2017 06:58 Event

July 26th, 2017 07:26 Event

B field reversal in z direction
MAGNETIC MIRRORING

Magnetic moment
\[\mu = \frac{1}{2} m v^2_\perp \frac{1}{B} \]

Pitch angle
\[\theta = \sin^{-1} \left(\frac{v_\perp}{v_0} \right) \]

Kinetic energy
\[E_k = \frac{1}{2} m \left(v^2_\perp + v^2_\parallel \right) \]

Trapped electrons
\[\frac{\pi}{2} > |\theta| > \sin^{-1} \left(\frac{B_0}{B_1} \right) \]
SPEED OF MAGNETIC HOLES

July 26th, 2017 06:58 Event

2599.7920 km/s
Max correlation: 0.99833

July 26th, 2017 07:26 Event

1783.5461 km/s
Max correlation: 0.86330867
PLASMA PARAMETERS

July 26th, 2017 06:58 Event

- e- gyroradius: 4.67361 km
- e- gyrofrequency: 671.676 Hz
- Ion gyroradius: 220.113 km

July 26th, 2017 07:26 Event

- e- gyroradius: 24.6117 km
- e- gyrofrequency: 264.352 Hz
- Ion gyroradius: 580.034 km
• Magnetic trapping as a result of turbulence is a driving factor of electron acceleration to high energies

• The plasma parameters and speed of the magnetic holes indicates electrons can get trapped and spend sufficient time in magnetic holes for acceleration

• Looking forward, future studies will focus on identifying specific mechanisms behind acceleration
REFERENCES

- https://gfycat.com/idleembellishedhamadryas
- https://mms.gsfc.nasa.gov
- https://www.physics.byu.edu/faculty/christensen/Physics%20220/FTI/29%20Magnetic%20Fields/29.20%20Motion%20of%20a%20charged%20particle%20in%20a%20magnetic%20bottle.htm
- https://gfycat.com/anxiouswellworncow