1. **Abstract**
 - Calculate the moon's position over a three-year span and compare its position to the position of Earth's magnetotail and bow shock.
 - Provide information as a decision support table for Deep Space Radiation Genomics (DSRG) Yeast Experiment.
 - Determine if passage through Earth's bow shock poses a concern for altering the ionizing radiation encountered by a yeast experiment.

2. **Introduction**
 - The magnetized plasma of the supersonic solar wind deforms Earth's magnetic field into the magnetosphere.
 - The magnetosphere has a blunt dayside nose extending to about 10 Earth radii (RE) on the sunward side of Earth and a long 'magnetotail' that extends in the anti-sunward direction several hundred RE (See Fig. 1).
 - The moon spends about six days out of every lunar cycle in the magnetotail. Figure 1 shows that Earth's magnetotail swings (aberrates) dusk ward from the Sun-Earth line.
 - Solar wind plasma, which carries a weak interplanetary magnetic field from the Sun to Earth, must slow or brake as it approaches the magnetostail. A bow-shaped shock forms around the magnetosphere to facilitate this braking to subsonic speeds.
 - The interplanetary magnetic field (IMF) is compressed and becomes more structured. The compression of the IMF produces a field gradient that can act as a deflector of low energy particles but can also accelerate particles of certain energies to higher energies.
 - Radiation of biological concern to the human spaceflight program is primarily "ionizing radiation."
 - Ionizing radiation is produced by energetic particles (charged and neutral) or photons with sufficient energy to pass into and through human tissue; for protons, the threshold energy is ~10 MeV.
 - The energy threshold for concern is typically more like 20-30 MeV.
 - These are the energetic particles that are relevant to the experiment that cannot be disturbed by the bow shock.

3. **Methods**
 - To calculate a python astronomical ephemeris library PyEphem was used, it can calculate the moon's position in right ascension (RA), declination (dec), distance from the earth to the moon, and moon phase.
 - The moon's position then had to be converted from GSE coordinates (RA and dec) to GSE coordinates. The conversion was outlined by Hapgood (1992), which required two transformations in a matrix.
 - The moon's position was then plotted in XYZ cartesian vectors.
 - The magnetotail and bow shock were then plotted as 2D circles at x = ±60Re. The magnetotail's GSE x,y,z components are (x = ±60Re, y = Δy, z = 0) with a radius of 30Re(Earth radii).
 - The magnetotail circle is aberrated in the +y direction defined by y = |xmoon|29/v_sw (Hapgood 2007).
 - The bow shock is centered around the magnetotail with a radius of ~50Re (Sibeck et al., 2014).

4. **Results**
 - Figure 2 shows the results from plotting the moon's position and the magnetotail.
 - The Blue points represent the moon's position that would qualify as a "yes" decision in the table.
 - Purple data points represent a three-day window before the moon enters the bow shock.
 - Yellow points represent the moon in the bow shock.
 - Red represents the moon in the magnetotail.
 - A literature review suggest the bow shock does not have a significant effect on energetic particles relevant to the DSRG effort.

5. **Conclusions**
 - The results from the graphical representations of the moon's position compared to the position of the magnetotail and bow shock illustrated that there were 9-12 days each month when the experiment could not start.
 - Two decision tables were created; one providing 'yes' or 'no' decisions considering only the magnetotail, and another considering the bow shock and magnetotail.
 - Both tables exclude an additional three days to ensure that the experiment can run for a full three days before it enters the magnetotail.
 - It is believed having the DSRG experiment run while passing into the bow shock will not have a significant impact on the experiment.
 - Extreme events that would severely alter the magnetospheric shape occur about once a decade for an interval of 24-72 hours.
 - Predicting such events is beyond current forecasting capability.

Acknowledgements

Thank you to Luis Zaa who contact our team about work with his DSRG experiment and for giving us time the opportunity to work with him over the summer. Thank you to Mike Hapgood who gave information about possible programs to calculate moon's position and outlined the magnetotail position.

References