Exploration of the Physical and Spectroscopic Characteristics of Coronal Rain

Kalista Tyson1, Daniela Lacatus2, Alin Paraschiv3, Paul Bryans2
1 Antelope Valley College, 2 High Altitude Observatory, 3 National Solar Observatory

Abstract

The correlation between the phenomenon known as coronal rain and the origin of the Sun's heating and cooling mechanisms has become a popular area for exploration in recent years. In this study, we explore the specifics of how plasma flows are triggered and how material moves along closed magnetic field entities. Using spectroscopic data from the Interface Region Imaging Spectrograph (IRIS), we analyzed the Mg II, Si IV, and C II emission lines in relation to the different magnetic structures, allowing us to study plasma under different emitting regimes. We have extracted spectroscopic characteristics of these emission lines for an off-limb prolonged coronal rain event taking place above a quiescent active region system. Additionally, we augmented our dataset with SDO/AIA coronal observations, highlighting corresponding higher temperature structures. We report a case where recurring coronal rain episodes occur over timescales of several hours. Our work reveals a multitude of complex, differently oriented, and turbulent, structures under what appeared to be a standard coronal rain event.

Introduction

What is coronal rain?
- Coronal rain typically occurs after destabilization of a filament/prominence or as a result of eruptive events in the solar corona where (relatively) cool and dense clumps of plasma is kicked up from the solar surface and the "rain" is due to the plasma falling back down along the closed magnetic field entities, otherwise known as loops.

Our Goals:
- Understanding how plasma flows work and how they move along closed magnetic field entities.
- Following the evolution of solar structures in detail.
- Specifically analyzing the Mg II spectroscopic emission links from a coronal rain event.
- Exploring emission line characteristics.

How do we obtain the data and imagery?
- Interface Region Imaging Spectrograph (IRIS) provides spectroscopic data.
- SDO/AIA observations showing the large scale context.

Methodology

Level-2 data were acquired from IRIS and were further calibrated to physical units.
- Data analysis using Python
 - Code packages: Astropy, Numpy, Scipy, Matplotlib
 - Creating functions and using them to simplify the coding process.
 - Doppler shift maps highlight the different flow systems within the larger structure.
- Other tools: SAOImageDS9, Interface Region Imaging Spectrograph (IRIS), Interface Region Imaging Spectrograph (IRIS) provides spectroscopic data.

Results

- What does the data and imagery tell us?
 - Evolving structures: The structure shows important dynamics and morphological changes.
 - Timescales: Individual flows are short-lived, but recurring flows happen over a 10-hour period.
- Using the fit parameters for the Mg II emission lines we constructed maps of integrated intensity, Doppler shift, and Line width for all sets of scans in the dataset.
- Doppler shifts map highlight the different flow systems within the larger structure.
- The flows highlight the magnetic structures within the active region loop system.

Conclusions

- What appeared from emission to be a very simple event, actually: revealed a multitude of complex, differently oriented and turbulent structures under what appeared to be a standard coronal rain event.
- had different flow structures within the event as highlighted by the Doppler shift maps.
- showed substructures lines with various strands being active at different times during its lifetime.
- evolved continuously for approximately 10 hours.

Future Work

- In the future, we will expand our research to include the C II and Si IV emission lines in order to perform the temperature structure.
- compare the evolution of the structures as recovered from the different analysis techniques.
- identify possible precursors of the observed activity.

References

Acknowledgements

This research was supported by the National Science Foundation REU program, award #1659878.
We welcome and appreciate the open data policy of the IRIS and SDO missions.
Raw data and calibration instructions are obtained courtesy of the LMSAL/IRIS and NASA/SDO science teams.