Constraints on Dynamo Evolution from Spectropolarimetry of Solar Analogs

NASA Collaborators: Jennifer van Saders (U.Hawaii), Ricky Egeland (NASA), \& many others

A paradigm shift for magnetic evolution

Θ

Stokes V signal (components)

Signals doppler shifted due to rotation

Stokes V signal (net)

radial

obs
CR2109 (radial)

meridional (N-S) azimuthal (E-W)

$\ell<5$

Weakened magnetic braking suspected

- Older Kepler field stars rotate more quickly than expected from theory
- Discrepancy appears at critical Rossby number, Ro $=\left(P_{\text {rot }} / \tau_{c}\right) \sim R_{\text {。 }}$
- Models with weakened magnetic braking beyond Ro。reproduce the data

Weakened magnetic braking confirmed

- Distribution of rotation periods in the Kepler field shows long-period edge

2.5
- Pile-up confirmed: sample with precise $\mathrm{T}_{\text {eff }}$ shows range of ages near edge

1. slow rotation becomes non-differential

Featherstone \& Hindman 2016
2. loss of shear disrupts field conversion 3. decaying dipole stalls braking

Ω effect (poloidal \rightarrow toroidal field)

Activity level evolves continuously with age

- Activity of solar analogs and asteroseismic targets decline continuously
- Solar dipole field is $\sim 1 \mathrm{G}$ while unstructured quiet Sun has $\langle B\rangle \sim 170 G$
- Disruption of large-scale organization is irrelevant to integrated activity level

Variability is Sun-like before disappearing

- Variability in young solar analogs is multi-periodic, often appears irregular
- Sun-like cycles appear at high Rossby number, evolving to "flat activity"
- Grand minima could be intermittency as activity evolves across threshold

Cycles grow longer and weaker in old stars

- Stalled rotation coincides with longer activity cycles and weaker variability
- Same pattern observed in hotter and cooler stars at same Rossby number
- Solar cycle appears to be in the transition, and may disappear in a few Gyr

Magnetic and Rotational Evolution of $\rho \mathbf{C r B}$ from Asteroseismology with TESS

Travis S. Metcalfe $\left.{ }^{1,2}{ }^{(}\right)$, Jennifer L. van Saders $\left.{ }^{3}{ }^{(}\right)$, Sarbani Basu ${ }^{4}{ }^{(1)}$, Derek Buzasi ${ }^{5}{ }^{\circ}$, Jeremy J. Drake $\left.{ }^{6}{ }^{(}\right)$, Ricky Egeland $^{7}(\mathbb{O}$,

Oleg Kochukhov ${ }^{14} \oplus$, Savita Mathur ${ }^{15,16}{ }^{\circ}$, Timo Reinhold ${ }^{17}{ }^{(1)}$, Victor See ${ }^{18} \mathscr{C}^{\circ}$, Sallie Baliunas ${ }^{6}$, and Willie Soon ${ }^{6}$

The Origin of Weakened Magnetic Braking in Old Solar Analogs

 Jennifer L. van Saders ${ }^{7}(1)$, Catherine A. Clark ${ }^{8,9} \oplus$, Diego Godoy-Rivera ${ }^{10,11,12} \mathscr{C}^{(1)}$, Ilya V. Ilyin ${ }^{13}\left(\mathbb{C}\right.$, Marc H. Pinsonneault ${ }^{10} \oplus(\mathbb{C}$, Klaus G. Strassmeier ${ }^{13}{ }^{(1)}$, and Pascal Petit ${ }^{14}$ (©)

Constraints on Magnetic Braking from the G8 Dwarf Stars 61 UMa and τ Cet

 Adam J. Finley ${ }^{5} \oplus$, Oleg Kochukhov ${ }^{6}{ }^{\oplus}$, Pascal Petit ${ }^{7}$ © , Victor See $^{8}{ }^{\oplus}$, Keivan G. Stassun ${ }^{9}{ }^{\circ}$, Sandra V. Jeffers ${ }^{10}{ }^{\circ}(\mathbb{}$, Stephen C. Marsden ${ }^{11}{ }^{(1)}$, Julien Morin $\left.{ }^{12}{ }^{(}\right)$, and Aline A. Vidotto ${ }^{13}$ (CO

Direct estimates of wind braking torque

- Braking torque weakens by $\sim 300 x$ between Ro of 61 UMa and τ Cet
- Empirical value of critical Ro (shaded) constrained by HD 76151 and 16 Cyg
- Larger uncertainties when we only have upper limits on the large-scale field

Summary of conclusions

- At a critical Rossby number comparable to the solar value, magnetic field loses large-scale organization
- At constant rotation period, the magnetic cycle grows longer and weaker on stellar evolutionary timescales
- As stars evolve below a critical activity level, cycles can become intermittent - producing grand minima
- Subgiant rotation slows further and cycles disappear, but then CZ deepens and reinvigorates the dynamo

HD 166620: grand minimum

- Showed a clear Sun-like activity cycle during the Mount Wilson survey
- Keck data are consistent in the late-90s, constant activity level after 2003
- Critical Rossby number corresponds to the mean activity level during cycles

94 Aqr Aa: history of WMB

- Given stellar properties of subgiant, predict current rotation period ($47 \pm 4 \mathrm{~d}$)
- Weakened magnetic braking after middle-age yields: $P_{\text {rot }}=48 \pm 4$ days
- Standard spin-down for complete main-sequence yields: $\mathrm{P}_{\text {rot }}=78 \pm 7$ days

94 Aqr Aa: born-again dynamo

- Subgiant mass suggests that it was an F-type star on the main-sequence
- After losing any original cycle, rotation slowed as it expanded and cooled
- Convection zone became deeper, longer timescale reinvigorated the dynamo

