Constraints on Dynamo Evolution from Spectropolarimetry of Solar Analogs

A paradigm shift for magnetic evolution

Skumanich 1972 Metcalfe+2023

slide: Victor See

Weakened magnetic braking suspected

- Older Kepler field stars rotate more quickly than expected from theory
- Discrepancy appears at critical Rossby number,
 Ro = (P_{rot} / τ_c) ~ Ro_o
- Models with weakened magnetic braking beyond Ro_o reproduce the data

Weakened magnetic braking confirmed

- Distribution of rotation periods in the Kepler field shows long-period edge
 - No detection bias: rotation from asteroseismology shows similar distribution
- Pile-up confirmed: sample with precise T_{eff} shows range of ages near edge

1. slow rotation becomes non-differential

2. loss of shear disrupts field conversion 3. decaying dipole stalls braking

Higgins 2012 Reville+2015

Activity level evolves continuously with age

- Activity of solar analogs and asteroseismic targets decline continuously
- Solar dipole field is ~1 G
 while unstructured quiet
 Sun has (B) ~170 G
- Disruption of large-scale organization is irrelevant to integrated activity level

Variability is Sun-like before disappearing

- Variability in young solar analogs is multi-periodic, often appears irregular
- Sun-like cycles appear at high Rossby number, evolving to "flat activity"
- Grand minima could be intermittency as activity evolves across threshold

Egeland+2017, Tripathi+2021, Kitchatinov 2022

Cycles grow longer and weaker in old stars

- Stalled rotation coincides with longer activity cycles and weaker variability
- Same pattern observed in hotter and cooler stars at same Rossby number
- Solar cycle appears to be in the transition, and may disappear in a few Gyr

Metcalfe & van Saders 2017, Metcalfe+2019

© 2021. The American Astronomical Society. All rights reserved.

Magnetic and Rotational Evolution of ρ CrB from Asteroseismology with TESS

Travis S. Metcalfe^{1,2}, Jennifer L. van Saders³, Sarbani Basu⁴, Derek Buzasi⁵, Jeremy J. Drake⁶, Ricky Egeland⁷, Daniel Huber³, Steven H. Saar⁶, Keivan G. Stassun⁸, Warrick H. Ball^{9,10}, Tiago L. Campante^{11,12}, Adam J. Finley¹³, Oleg Kochukhov¹⁴, Savita Mathur^{15,16}, Timo Reinhold¹⁷, Victor See¹⁸, Sallie Baliunas⁶, and Willie Soon⁶

THE ASTROPHYSICAL JOURNAL LETTERS, 933:L17 (6pp), 2022 July 1

https://doi.org/10.3847/2041-8213/ac794d

© 2022. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

The Origin of Weakened Magnetic Braking in Old Solar Analogs

Travis S. Metcalfe¹, Adam J. Finley², Oleg Kochukhov³, Victor See⁴, Thomas R. Ayres⁵, Keivan G. Stassun⁶, Jennifer L. van Saders⁷, Catherine A. Clark^{8,9}, Diego Godoy-Rivera^{10,11,12}, Ilya V. Ilyin¹³, Marc H. Pinsonneault¹⁰, Klaus G. Strassmeier¹³, and Pascal Petit¹⁴

The Astrophysical Journal Letters, 948:L6 (5pp), 2023 May 1

https://doi.org/10.3847/2041-8213/acce38

© 2023. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Constraints on Magnetic Braking from the G8 Dwarf Stars 61 UMa and τ Cet

Travis S. Metcalfe¹, Klaus G. Strassmeier², Ilya V. Ilyin², Jennifer L. van Saders³, Thomas R. Ayres⁴, Adam J. Finley⁵, Oleg Kochukhov⁶, Pascal Petit⁷, Victor See⁸, Keivan G. Stassun⁹, Sandra V. Jeffers¹⁰, Stephen C. Marsden¹¹, Julien Morin¹², and Aline A. Vidotto¹³

Direct estimates of wind braking torque

- Braking torque weakens by ~300x between Ro of 61 UMa and τ Cet
- Empirical value of critical Ro (shaded) constrained by HD 76151 and 16 Cyg
- Larger uncertainties when we only have upper limits on the large-scale field

Summary of conclusions

- At a critical Rossby number comparable to the solar value, magnetic field loses large-scale organization
- At constant rotation period, the magnetic cycle grows longer and weaker on stellar evolutionary timescales
- As stars evolve below a critical activity level, cycles can become intermittent producing grand minima
- Subgiant rotation slows further and cycles disappear, but then CZ deepens and reinvigorates the dynamo

HD 166620: grand minimum

- Showed a clear Sun-like activity cycle during the Mount Wilson survey
- Keck data are consistent in the late-90s, constant activity level after 2003
- Critical Rossby number corresponds to the mean activity level during cycles

94 Aqr Aa: history of WMB

- Given stellar properties of subgiant, predict current rotation period (47 ± 4 d)
- Weakened magnetic braking after middle-age yields: P_{rot}= 48 ± 4 days
- Standard spin-down for complete main-sequence yields: P_{rot}= 78 ± 7 days

94 Aqr Aa: born-again dynamo

- Subgiant mass suggests that it was an F-type star on the main-sequence
- After losing any original cycle, rotation slowed as it expanded and cooled
- Convection zone became deeper, longer timescale reinvigorated the dynamo