


Overview of Talk

White-light (optical and NUV continuum) radiation

Electron beams in solar and stellar flares
The problem of high energy fluxes

Overview of Kontar et al. 2012 beam-plasma transport theory and results
Application to white-light & line emission in stellar flares (Kowalski 2023
ApJ Letters)

New directions: some first results
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White-Light Stellar Flares

Broadband optical continuum enhancements observed on cool stars with Kepler, K2,

TESS
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Hawley et al. 2014 (Kepler data of GJ 1243 -- active M4 main-
sequence star)

11 mo of 1-minute cadence data



Biological Effects in M-dwarf Habitable Zones

Laboratory experiments of 2000-
2800 A superflare irradiation of an
exoplanet (Abrevaya et al. 2020;
right)

X-rays from flare can be
reprocessed into NUV (Smith et
al. 2004)

0

log (N/N )

Fluence (J m %)
0 10000 20000 30000 40000

=2}

log(N/N )
e

%]

' 5040Jm? 37800Jm°

@(}%g}omdfﬂ(}

0 100 200 300 400

Irradiation time (sec)



Flares are faster in NUV, slower in SXR
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See also Osten & Wolk 2015
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Particle acceleration & transport are
key in linking magnetic field action
to heating/radiation

Reconnection under erupting filament and with
erupting filament
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Power-laws of electron beams produced in corona

~ 5-20% of background plasma accelerated into power-laws
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Large Nonthermal Electron Fluxes (erg/s/cm?) into the Chromosphere

(a) G-band
Krucker et al. 2011
N Standard collisional thick target
\ modeling (CTTM) infers
8 fluxes of
i 1072 - 10'3 erg/s/cm? above E_ =
- 18-20 keV

25-100 keV: Non-thermal Bremss hard-
X-rays (from RHESSI)
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Another flare (Mar 29 2014): 3.5 x 10" (“3.5F11”; Kleint et al. 2016) to ~2x10'2 erg / s / cm? (“2F12”; Kowalski et al.
2017) above ~20 keV inferred.

Long story short: beam particles should thermalize in corona through return current electric fields and beam-
plasma instabilities... Only catastrophic energy loss = DOOM of coronal electron beams ?!



Solar-type Electron Beams with small low-energy cutoffs

Models of M-dwarf flare heating using electron beam parameters derived from
“CTTM?” (collisional thick target model”) of hard X-ray footpoints (Brown 1971)
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Giant Flare from YZ CMi

Observational evidence for deep heating in stellar (M dwarf) flares
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Nothing new to see
here, folks, except
high-timeres of T
~ 9000 - 11,000 K
color temp in rise

and peak phases
(Hawley & Fisher 1992,
Fuhrmeister+08,
Kowalski+2013, ...)

ULTRACAM data from Kowalski+16, filter ratios (4170/6010A) converted to color temps in K2023



What physical processes could (possibly) explain extreme
beams -- and the deep heating -- in stellar flares?

Thankfully, | didn’t have to ask ChatGPT.

| thank Eduard Kontar for pointing me in a productive direction and for
helpful discussions.



Modeling nonthermal particle transport in an atmosphere

A:. Particle-in-cell (e.g., Li, Drake, & Swisdak 2012)

- collisionless (Vlasov-Maxwell), very short temporal & spatial scales
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B: Beam distribution function in phase space (Allred+2020) o
- collisional Fokker-Planck treatment, time-indepen /ot
- able to calculate background plasma heating

C. Time-dependence of background plasma wave energy density (Kontar+2012)

- the “quasilinear” / weak turbulence theory

- Coulomb collisions included but other simplifications made



Option C: Time-Dependence and Background Plasma Evolution
(Langmuir and lon-Acoustic Waves):

Kontar et al. 2012 solves time-dependent distribution function (t = 0 to 1s) with background
plasma waves and with Coulomb collisions
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Summary of Kontar et al. 2012 results

Solved simultaneous equations of (1) distribution functions for Maxwellian backgd
+ Powerlaw beam (for n_beam / n_backgd ~ 1e-2) and (2) backgd plasma waves
over At=1s

Collisional loss terms (drag and diffusion) on beam electrons (simplified Fokker-
Planck)

Regimes not accessible in PIC simulations (but have been investigated with PIC)

lon-acoustic and Langmuir plasma waves: diffusion, refraction, and non-linear
wave-wave interactions (decay and scattering)

Background density fluctuations and density gradient (important too)
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Fig. 5. Same as Fig. 2 but with ion-sound wave interactions as well as
density fluctuations.



Langmuir Wave Demo (mono-k)

)

T=10°K n.=5x 10 cm™3 Wpe N 100 rad s~ 1

ase — T ~ 0.5
Uph k(t) C

k changes smoothly through diffusion
& refraction

k decreases abruptly through non-
linear 3-wave processes

resonant acceleration of beam
electrons (here, 80 keV) with phase
velocity of electric fields in wave
(~Landau damping)






Story so far

Kontar et al. 2012: postulated that increase in E > 100 keV electrons systematically
leads to higher production of hard X-rays with far fewer number of total electrons;
possibly alleviates problems from large fluxes inferred using CTTM, as in Krucker et al.
2011

For stellar flares (Kowalski 2023): With a 10x larger number of E > 100 keV electrons
than typically assumed from CTTM power-laws in solar flares, what are the implications
for heating the low chromosphere and producing NUV and optical continuum radiation?



Simulated M-dwarf chromospheric heating to Kontar et al.
2012 beam

Use RADYN and Fokker-Planck solution (Allred et al. 2015)
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Heating in low vs. high chromosphere
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Compared to Heating Rates from Large E_
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Kernels: most of wing broadening and optically thick T~
1e4 K continuum (with Large E_, Model)
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Can use good models to predict missing wavelengths
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Much parameter space to explore with Kontar+12 code!
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New simulation (left) with larger beam density
Note: still some problems to work out (short-timescale effects, fully relativistic
theory d.n.e.)
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New interpretations of solar flare optical and hard X-ray data
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New radiative-hydro RADYN calculations driven by Kontar+12 beam heating



Conclusions

The beam transport and plasma wave interaction theory of Kontar et al. 2012
produces an enhancement in E > 100 keV electrons that may plausibly provide a
physical explanation for the deep heating in stellar flares around log col mass ~ -2

An alternative hypothesis to CTTM-inferred power-laws is now possible using RADYN
simulations of solar and stellar flares

Many other problems in solar / stellar flares can be investigated (interpretation of HXR
data, multi-wavelength energy budgets, anomalies in radio spectra, etc...)
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