2023 Sun-Climate Symposium Flagstaff, AZ 2023-10-17

Does Earth's Intrinsic Magnetosphere Protect our Atmosphere from the Solar Wind?

- Comparative Measurements of Atmospheric Ion Escape at Earth, Venus, and Mars

ROBIN RAMSTAD¹

¹LABORATORY FOR ATMOSPHERIC AND SPACE PHYSICS, UNIVERSITY OF COLORADO BOULDER, CO, USA

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

Ion escape in induced/intrinsic magnetospheres

[Seki et al. 2001]

Ambipolar Resistive $\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \frac{1}{n_e e} \mathbf{J} \times \mathbf{B} - \frac{1}{n_e e} \nabla p_e + \mathbf{J} / \sigma$

Gravity and escape

Escape velocity

	Venus	Earth	Mars
	10.4 km/s	11.2 km/s	4.9 km/s
	Escape energy		
ł	0.6 eV	0.7 eV	0.14 eV
)	8.9 eV	10.3 eV	2.1 eV
) ₂	17.8 eV	20.6 eV	4.2 eV

Energy-mass spectrometers

Atmospheric ion escape at Venus, Earth, Mars

Fluxes of escaping O+ ions from Venus, Earth and Mars in cylindrical coordinates.

Shown to scale!

Adapted from: *Fedorov et al.* [2008] *Nilsson et al.* [2012] *Ramstad et al.* [2017d; 2021]

Ion escape rates at Venus, Earth, Mars

Ramstad & Barabash [2021]

Earth ion escape drivers

Both solar EUV and solar wind are strong drivers of escape from Earth's atmosphere

Energy range (and location) matters

 $8 - 10^{24}$

A high energy cut-off can leave out cold plasma populations

• Increase in energization conflates increase in escape rate

Ramstad [2017]

-Q(E < 50 eV)-Q(E > 50 eV)

 $Q_{\rm tot}$

Ion escape dependence on solar wind dynamic pressure.

Mars – Negligible dependence.

Venus – Weak positive dependence.

Earth – Strong positive dependence.

Ion escape dependence on solar wind dynamic pressure.

Mars – Negligible dependence.

Venus – Weak positive dependence.

Earth – Strong positive dependence.

Ion escape dependence on solar wind dynamic pressure.

Mars – Negligible dependence.

Venus – Weak positive dependence.

Earth – Strong positive dependence.

Ion escape dependence on solar wind dynamic pressure.

Mars – Negligible dependence.

Venus – Weak positive dependence.

Earth – Strong positive dependence.

Ion escape dependence on solar wind dynamic pressure.

Mars – Negligible dependence.

Venus – Weak positive dependence.

Earth – Strong positive dependence.

Solar EUV dependence

Ion escape from Venus and Mars displays opposite dependences on solar EUV/XUV, despite both interacting with the solar wind similarly.

Kollmann et al. [2016]

Ramstad et al. [2017b] Dong et al. [2017]

Venus ion escape is energy-limited

Increasing solar wind power reduces O⁺ return flows, increasing the escape rate

Persson et al. [2020]

Coupling dependence on solar EUV

Intrinsic magnetosphere (Earth)

Ramstad et al. [2017b]

Ohtani et al. [2014]

Pathway to atmospheric ion escape

Ion escape requires

- Ionization of neutrals
- Energization of ions
- Transport path out of the gravity well

Mars ion return flows increase with EUV

High EUV

During high EUV conditions, returning gravitationally bound ion flows appear in the Martian magnetotail

Ramstad et al. [2024], in prep

Generalized atmospheric ion escape

Ramstad & Barabash [2021]

Conclusions

- Varying solar EUV and solar wind have varying and sometimes opposite effects on ion escape from each of the terrestrial planet
- Ion escape from Venus and Earth appears energy-limited
- Earth's magnetosphere makes the ion escape response sensitive to solar wind variations
 - Protects in weak SW, acerbates escape in strong SW
 - SW coupling increases with EUV
- Ion escape from Mars is supply-limited, but on the verge of transitioning to an energy-limited state
- Weak gravity does not necessarily mean high ion escape rates
 - System may be in an ion supply-limited state (Mars)

Conclusions

Does Earth's Intrinsic Magnetosphere Protect our Atmosphere from the Solar Wind?

- It depends!

Extra

Primordial solar wind event

Ramstad et al. [2017]

Primordial solar wind event

Ramstad et al. [2017]