Earth's Global Mean Energy Flow System Derived from a Simple Greenhouse Model Using Total Solar Irradiance as a Single Input Parameter Sun-Climate Symposium, 16-20 October, 2023, Flagstaff, AZ, USA Miklos Zagoni, Eotvos Lorand University (retiree), Budapest, Hungary. email: Miklos.Zagoni@EarthEnergyFlows.com

A Sun-Climate Symposium

The Sun:

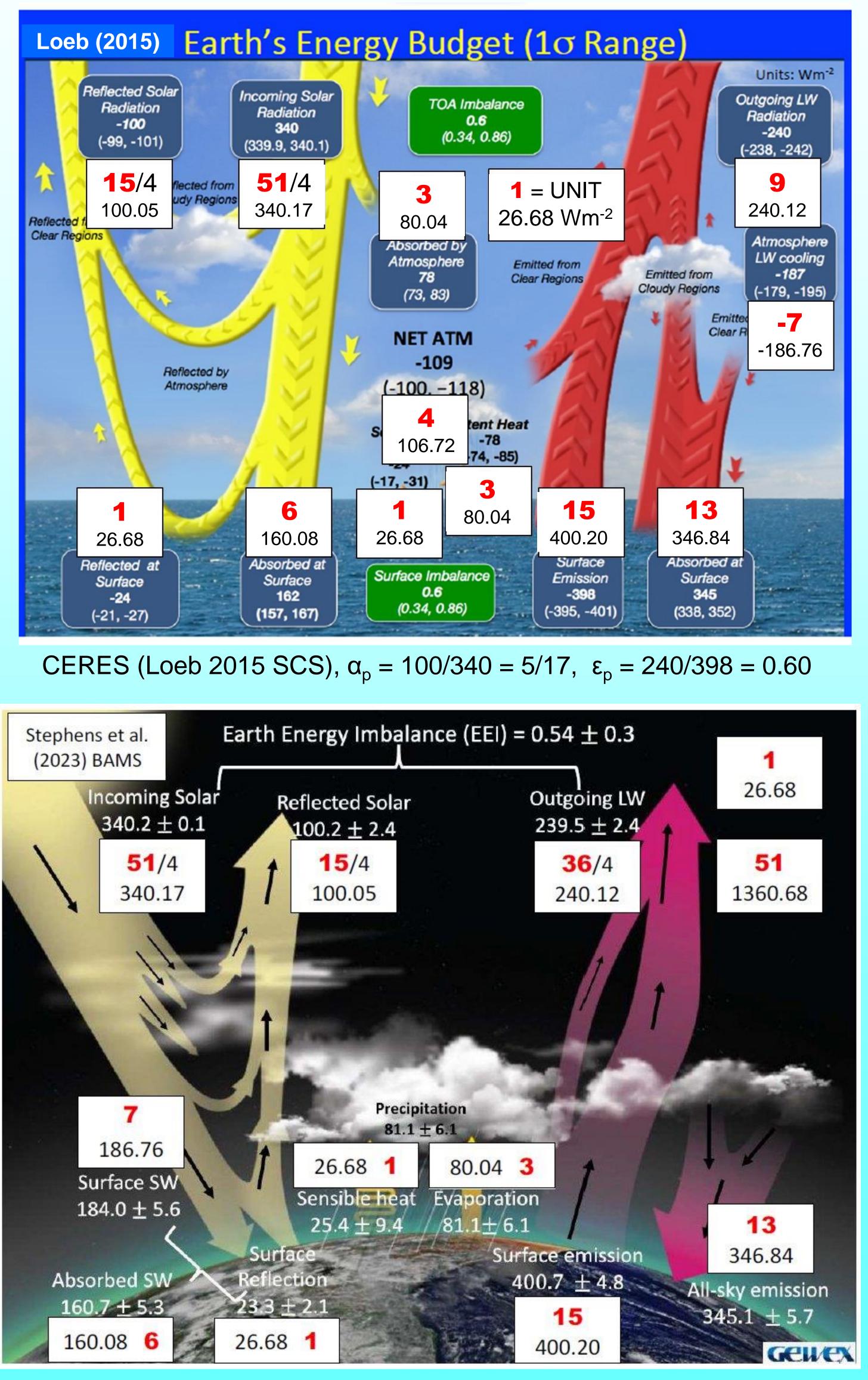
– I give you a TSI. What would you do with it? The Climate:

– I would call it **17**. Then I'd reflect **5** and absorb **12**. I would do it already on the intercepting cross-section disk. Then I would divide the absorbed **12** by four for spherical weighting. From this **3** I would create **5** terrestrial upward emission at the lower boundary and evidently **3** outgoing emission at the upper boundary.

The Sun:

– How do you know that your numbers are correct? The Climate:

– I look at the CERES (Loeb 2015 Sun-Climate Symposium) energy flow estimate and I can see that albedo $\alpha_{\rm p} = 100/340$, identical to my 5/17. I can also see there that the planetary emissivity (TOA LW up / SFC LW up) $\epsilon_{\rm p} = 240/398 = 0.603$, while my 3/5 = 0.6. GEWEX (BAMS 2023) is similar. The Sun:


– Okay, but how do you know how much energy I give you in my TSI? The Climate:

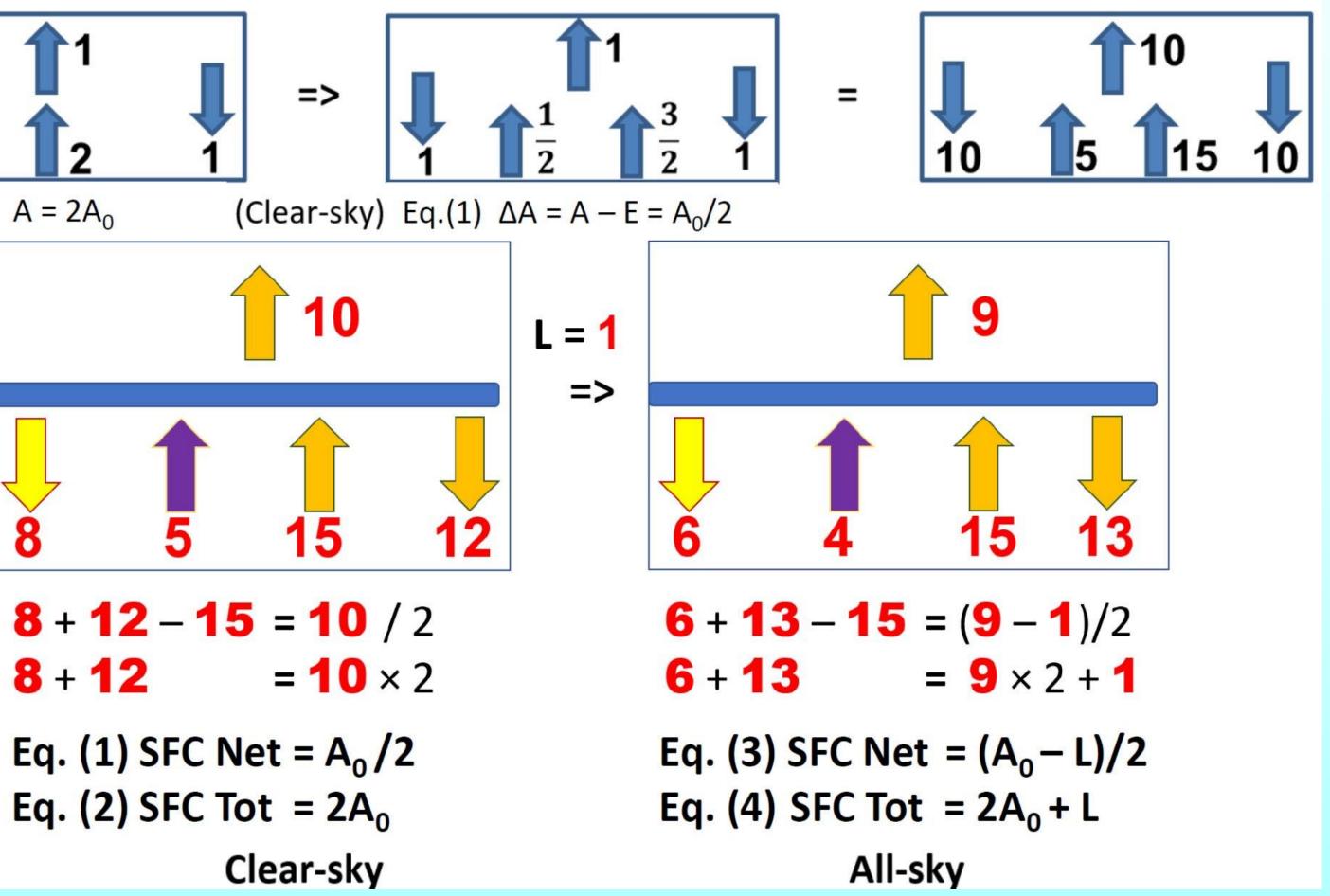
– It is easy. I look into data products and I can see that my **3** (TOA LW Up; OLR) is 240.12 Wm⁻², and my **5** (Surface LW Up, ULW) is around 400.20 Wm⁻² in their estimates. From this I know that my **1** is 80.04 Wm⁻², so you have given me 17 = 1360.68 Wm⁻², if I count with spherical weighting. But if I use their geodetical weighting factor of 4.0034, then I know that you gave me TSI = 1361.84 Wm⁻².

The Sun:

– Gee, really, I give you exactly this amount of energy in TSI. The Climate:

– And for your pleasure, I then break my **1** into three "climate quarks", 1 = 3 = 26.68 Wm⁻², and I show you that the global mean energy flow components (clear-sky and all-sky, shortwave and longwave, at the TOA, within the atmosphere and at the surface, even the non-radiative energy fluxes separately (latent and sensible heat) can be expressed in these units, within the stated range of uncertainty of the observations.

GEWEX (Stephen et al. BAMS 2023)


Eq.(2) $A = 2A_0$ 8 + 12

Four equations: two clear-sky identical to Schwarzschild's (1906, Eq.11); and two all-sky version. Pure geometry, no atmospheric composition, GHGs or lapse rate was assumed.

Table 2-1. Theory vs CERES observation for global mean clear-sky fluxes for April 2000-March 2022 (W m ⁻²)							Table 4-1. Theory vs observation for global mean TOA and surface fluxes and CREs for CERES EBAF Edition 4.2 for April 2000 to March 2022 (W m ⁻²).						
	Clear-sky	Ν	N × Unit	EBAF Ed4.2	Difference			All-sky	N	N × Unit	EBAF Ed4.2	Diff	
	Cicui Sixy							SW insolation	51 /4	340.17	340.18	0.01	
Clear-Sky TOA	SW insolation	51 /4	340.17	340.18	0.01	TOA	SW up	15 /4	100.05	99.05	-1.00		
	LW	40 /4	266.80	266.13	-0.67		LW up	36 /4	240.12	240.33	0.21		
							TOT Net	0	0	0.8	0.80		
	SW	8/4	53.36	53.76	0.40		SW Net	6	160.08	163.65	3.57		
	Net	3/4	20.01	20.29	0.28		LW down	13	346.84	346.11	-0.73		
Clear-sky Surface	LW down	12	320.16	317.86	-2.30		Surface	LW up	15	400.20	398.42	-1.78	
						ТОА	LW Net	-2	-53.36	-52.31	1.05		
	LW up	15	400.20	398.61	-1.59		TOT Net	4	106.72	111.34	4.62		
	LW Net	-3	-80.04	-80.75	-0.71			CRE					
	SW Net	8	213.44	211.41	-2.03			SW	- 7 /4	-46.69	-45.28	1.41	
							TOA	LW	1	26.68	25.80	-0.88	
	SW + LW Net	5	133.40	130.66	-2.74		Net	- 3 /4	-20.01	-19.48	0.53		

For further details: radiative transfer equations, arithmetic solution, geometric deduction, explantions, interpretations, AMS, AGU and CERES presentations, please visit my website

Geometric deduction of the Ns

EarthEnergyFlows.com