Solar Spectral Irradiance Variability in Solar Cycle 25 in Direct Observations and in a New, Improved Solar Variability Model

O. Coddington, J. Lean and E. Richard

University of Colorado Boulder, Laboratory for Atmospheric and Space Physics

Outline

- Motivation & Objectives
- Datasets
- Sunspot & Facular Contrast Comparisons
- Solar Irradiance Comparisons
- Summary

Motivation

To apply research advances supported by NASA's Solar Irradiance Science Team to develop a new version 4 of the Naval Research Laboratory (NRL) SSI & TSI models.

Objectives

Resolve significant discrepancies among existing SSI variability models and observations.

Incorporate the advances into a new NOAA/NCEI Solar Irradiance Climate Data Record, V3 (August, 2024)

-3 Annual Meeting (Hybrid)

Datasets

- Observations
 - SSI: NASA's TSIS-1 Spectral Irradiance Monitor (SIM):
 - 200-2400 nm; daily observation; ~0.3% accuracy; 0.01%/year stability (> 400 nm)
- Observation-based (Empirical) Model
 - NRLSSI2 informed from SORCE-era observations and proxies of magnetic variability (USAF/SOON sunspot area, number and location and the University of Bremen Mg II Index) and transitioned to the public as the Solar Irradiance CDR, V2 (Coddington et al., 2016)
- Physics-based (Semi-Empirical) Model
 - SATIRE-S (Yeo et al., 2014) facular and sunspot contrasts by stellar model atmospheres (Y. Unruh, personal communication) and irradiance variability informed by magnetograms.
- Independent Intensity Contrasts
 - Facular, plage, umbra and penumbra contrasts by solar model atmosphere theory (Fontenla et al., 1999; 2011), with synthetic spectra computed from the Rybicki-Hummer (RH) radiative transfer model (*calculations courtesy of Serena Criscuoli*).
 - Umbra and penumbra contrast observations by Allen, 1955

Observationally-Derived Intensity Contrasts

The magnitude of the irradiance changes from Quiet Sun conditions are determined from *multiple linear regression analysis* of observations and proxy records of magnetic variability (sunspots & faculae).

After applying a wavelength-independent scaling factor, these regression coefficients – normalized by the Quiet Sun spectrum – can be directly compared to the faculae and sunspot contrasts predicted by theory.

Theoretical Contrasts

Solar & stellar theory predict differences in the magnitude and spectral shape of sunspot and facular contrasts.

Theoretical, Observed & Derived Contrasts

Contrasts derived from TSIS-1 SIM observations (and proxies of spots and faculae) more strongly support spectral shape predicted by the solar atmosphere theory.

TSIS-Derived Contrasts have been adjusted to Unruh, 2018 magnitude at 525.5 nm

Theoretical, Observed & Derived Contrasts

SORCE-Derived Contrasts inform the NOAA/NCEI Solar Irradiance CDR, V2

SORCE & TSIS-Derived Contrasts have been adjusted to Unruh, 2018 magnitude at 525.5 nm

Binned Irradiance Comparisons

Summary and Future Outlook

- Intensity contrasts of sunspots and faculae are key elements for modeling SSI.
 - Differences exist in theoretical predictions of these quantities (e.g., Unruh/stellar vs Fontenla/solar).
 - Contrasts derived from TSIS-1 SIM, SORCE SSI (and proxies of spots and faculae) more strongly support the spectral shape of the Fontenla/solar contrasts).
- Differences in intensity contrasts directly impact SSI estimates
 - As shown by the CDR V2 irradiances (derived from SORCE SSI observations) compared to the SATIRE estimates (informed by the Unruh/stellar theory).
- Ongoing work is incorporating high-quality TSIS-1 SIM observations to improve and validate a new CDR V3 (that will become operational in 2024).

Backups.

**New/Revised for NRLSSI4

CDR Deliverables

>20,000 website "hits" since 2016

Product	Туре	No. of wavelength bins	Time range,	update cadence	
TSI composite	Observational composite	Revised! –	1978–2014,	Initial delivery	
TSI (daily and monthly avg) NRLTSI2 model output		_	1882-2014,	will extend	
TSI (yearly avg)	NRLTSI2 model output	—	1610-2014,	through 2023	
SSI (daily and me Plus SS	SSI2 model output	4,300 (variable	1882-2014,	with periodic	
SSI (yearly avg) Hi-res	SSI2 model output	width)	1610-2014,	updates	
SSI reference spectra	NRLSSI2 model output	200,000 (1-nm bins)	Quiet sunLow, moderate, andNewMaunder MinimumSecular		
Facular brightening and sunspot darkening indices	NRLTSI2/NRLSSI2 model in	put —	1882–2014, qu	estimate	

Documentation	Clima	ate-Algorithm Theoretical Basis Document	Revised!
Stewardship	i. ii.	Yearly Quality Assurance Reports & replacement with final data Model Input Time Series	of preliminary data

Data Access

CDR Program: <u>https://www.ncdc.noaa.gov/cdr</u> LASP LISIRD: <u>http://lasp.(TBD .edu/lisird/data/nrl2 files</u>