
1

STUDENT NITRIC OXIDE EXPLORER (SNOE)
TELEMETRY AND FLIGHT SOFTWARE DESIGN

Mark A. Salada*, Randal L. Davis†

Laboratory for Atmospheric and Space Physics
University of Colorado

Boulder, Colorado
Phone: (303) 492-5208
Fax: (303) 492-6444

E-mail: salada@mirza.colorado.edu

* Graduate Research Assistant
† Mission Operations and Data Information Systems Division Director

 Abstract

This paper describes the telemetry
design and the flight software design for the
Student Nitric Oxide Explorer (SNOE)
satellite. Sponsored by NASA and the
University Space Research Association
(USRA) under the Student Explorer
Demonstration Initiative (STEDI), the SNOE
satellite is being designed, built and operated
by the University of Colorado’s Laboratory
for Atmospheric and Space Physics
(CU/LASP), with substantial involvement of
University students. It will be launched into a
sun-synchronous 550 km orbit in March
1997. An early decision for the SNOE project
sets forth a packetized telemetry data scheme
based upon the recommendations by the
Consultative Committee for Space Data
Systems (CCSDS). The CCSDS is an
international organization composed of
representatives from the world’s space
agencies. Compared to a traditional time-
division multiplexed telemetry system,
packetized telemetry systems provide
substantial design freedom: any number of
different packets can be developed to hold the
spacecraft’s science, engineering and
ancillary data. Generating packets sometimes
involves complex sets of functions that are,
just as all functions performed by the SNOE
software, grouped into software modules.
Since the SNOE software handles functions
traditionally implemented in hardware, the
software modules are called from a main loop
that is rigorously deterministic in its timing.

 I. SNOE Telemetry

 SNOE Physical Communication Channels

There are two telemetry channels
from the SNOE satellite. The first is a low-

rate (512 bits per second) channel that will
primarily be used for initial acquisition and
trouble-shooting. The channel has a safety
factor of approximately 9 dB, providing a
communication link in even the most extreme
conditions. The 512 bps bandwidth channel
has room for only real-time data, primarily
engineering telemetry, leaving science data
and playback data for the high-rate channel.
Even with the limited bandwidth, it is still
possible to transmit both engineering and
science data in real-time on the low-rate
channel. The second telemetry channel is a
high-rate communication channel that
transmits at 128k bps. This channel has the
bandwidth capacity to transmit engineering,
science and playback data without concern.
Both channels are NASA compatible
PCM/PSK/PM.

 SNOE Usage of CCSDS Recommendations

The choice to comply to CCSDS
packet telemetry recommendations1 derives
partly from a mission requirement to be
NASA compatible during flight. This
requirement provides the added security of
the already existing NASA ground station
coverage for initial acquisition and any
trouble-shooting necessary — a feature
beneficial to any satellite regardless of size.
Replacing the Time-Division Multiplexing
(TDM) telemetry format with packets
simplifies the ground station
engineering/science separation while
providing compatibility with new NASA
ground stations. Packetized telemetry also
suits the science mission very well.

Both telemetry channels utilize fixed-
length transfer frames with variable-length
source packets inside the frames. The transfer
frame lengths on each channel are not equal,
since each is derived from transmission rate

2

and desired frame update rate. The desired
real-time frame update rate is nominally 2
seconds, a value based solely on the desires
of mission operators. This equates to a frame
length of 1024 bits on the low-rate channel.
Frame length selection on the high-rate
channel, discussed below, is more involved.
Simple CRC error checking is performed on
a frame-by-frame basis, as neither telemetry
stream is Reed-Solomon encoded.
Additionally, SNOE will not utilize the
optional transfer frame secondary header.
The transfer frame overhead then equates to a
header of 48 bits, a 32-bit trailer for a Frame
Acceptance and Reporting Mechanism
(FARM)2, and a 16-bit CRC code, for a total
of 96 bits. This leaves a 464 bps real-time
bandwidth for data on the low-rate channel.

Originally, SNOE designers intended
to utilize the high-rate channel solely for
playback data. The bandwidth analysis for
the high-rate channel would then be identical
to the low-rate. However, if the SNOE team
used the low-rate channel as the only means
to a real-time communication link,
telemetering anything but engineering data on
the low-rate channel would effectively choke
the bandwidth and cause severely increased
engineering data update delays for the ground
crew. In other words, the operations team
would have to settle for either engineering
data only, science data with limited
engineering data, or neither during a memory
dump. Clearly, the limited bandwidth on the
low-rate channel complicates the downlink;
therefore, the SNOE team has ‘stolen’ part of
the high-rate channel for real-time
communication use.

 Real-Time Bandwidth Expansion

Telemetry design for the high-rate
channel is not as straightforward as design
for the low-rate channel. If the SNOE team
proceeded with the original design, frame
update rate would not be an issue as there
would be no real-time frames on the high-rate
channel. Yet the need for additional real-time
bandwidth is apparent. The SNOE team
therefore chooses to multiplex real-time
frames with playback frames on the high-rate
channel. The question then becomes one of
choosing the appropriate frame lengths and
multiplex ratio. For simplicity, the playback
and real-time frame lengths are chosen to be
identical. Also for simplicity, the playback
frame length is chosen to be about as large as
the largest Source Packet (discussed below).
This yields a frame length of 4096 bits. A

1/64 multiplex ratio accomplishes the desired
2 second real-time frame update rate. Fig. 1
illustrates the high-rate channel frame
multiplexing. Now performing the bandwidth
analysis as on the low-rate channel, the real-
time data rate on the high-rate channel is 2000
bps, approximately four times greater than

High-Rate Telemetry Stream

...1 2 3 4 63 64

2 seconds

164

4096-bit Real-Time Frames
(On Virtual Channel 1)

4096-bit Playback Frames
(On Virtual Channel 0)

Fig. 1 High-Rate Channel Frame
Multiplexing

with the low-rate channel alone. Also, the
1/64 frame multiplex ratio does not
significantly impact the playback bandwidth,
leaving approximately 123k bps. Clearly,
utilization of the high-rate channel for real-
time communication has expanded the SNOE
real-time data capacity, allowing
simultaneous engineering, science, memory
dump, and playback data transmission.

The next question is a concern for
separation of the playback frames from the
real-time frames on the ground. A built-in
CCSDS packet telemetry feature called
“Virtual Channels” solves the ground
separation problem. By Assigning different
virtual channel ID’s to playback and real-time
frames, any ground service compatible with
CCSDS packet telemetry can route any virtual
channel or frame to the end users of those
data. In this case, the real-time virtual channel
is sent to the spacecraft command and control
center while the playback channel is stored
for later processing.

 SNOE Source Packets

The available bandwidth for each
channel is used to hold flexible data
structures called “Source Packets.” The
SNOE telemetry system allows for packets to
overlap frame boundaries in both the low-rate
and high-rate channels. This unconventional
design decision maximizes the bandwidth

3

use, eliminating the so-called ‘slop,’ or
unused portion of a transfer frame. Most
telemetry systems steer clear of this technique
due to the fact that a loss of a single frame
may affect data in adjacent frames. The
SNOE team can afford this risk since loss of
an occasional piece of data does not cripple
the SNOE science objectives. This is a classic
example of a small satellite trade-off that the
SNOE engineering team has used to its
advantage.

The flexible CCSDS telemetry system
allows for customizing telemetry overhead to
a certain degree. The source packet secondary
header is an optional field in the source
packet whose contents are user defined. The
SNOE team uses the on-board timing
reference, a 32-bit Vehicle Time Code Word
(VTCW) as the secondary header, effectively
time-tagging the construction of every source
packet on-board. All source packets therefore
contain a 48-bit primary header (as specified
by CCSDS standards), a 32-bit VTCW, and
finally, a variable length data field. The
SNOE team divides all on-board telemetry
into two categories: pre-defined packets and
programmable packets.

 Pre-Defined Telemetry Packets

Of the total 11 source packets
designed for the SNOE mission, 9 are pre-
defined. Four science packets and 5
engineering packets compose the primary
telemetry structure. There are four science
instruments aboard the SNOE spacecraft.
Each instrument generates the data portion of
a source packet, whose headers and
additional information are then appended by
the flight software. The engineering packets
are constructed in an identical manner, with
the exception of the flight software also
taking responsibility for the contents of the
data field.

Engineering packet design centers on
telemetry sample frequency and availability.
The SNOE satellite is a spinning satellite;
many telemetry items on-board need updating
only as fast as the spacecraft spin rate.
Therefore, a packet is generated by the flight
software once every revolution, updating all
telemetry items only as fast as needed. The
remaining engineering packets have been
designed in a similar manner, with the
exception of the Memory Dump packet
whose contents mimic science packets. Table
1 lists the engineering packets with a
description of the items within each. There
are essentially three engineering packets

whose contents comprise all engineering
telemetry items on-board. The remaining

Packet Name Contents Update
Period

Communication
Status

Command
verification and
comm. link
status

2 sec.

Subsystem
Status

ADCS,
instrument
status, C&DH
parameters.

Spin
Period

General
Engineering

Temps, power,
C&DH
parameters

60 sec.

Critical
Engineering
(Contains
duplicate items
from main three
engineering
packets for low-
rate channel
science telemetry
mode)

Minimal
command
verification,
comm. link
status, power,
ADCS, and
C&DH
parameters.

6 sec.

Table 1 Packet Contents

engineering packets are simply reorganized
duplicates for particular anticipated telemetry
modes. As implied, all packets listed are pre-
defined packets whose contents cannot be
changed without re-programming in flight.

 Programmable Telemetry Packets

Although a term typically viewed with
trepidation, SNOE uses ‘programmable’
telemetry: items in some packets can be
selected in a custom manner during flight.
There are two such packets on-board the
spacecraft: the Programmable Rapid Sample
Packet and the Programmable Engineering
Packet. Each telemetry item on-board is
associated with an ID. These ID’s are then
used to populate the programmable packets
through ground commands. Both packets
limit the total number of items in each, but
neither pre-define the contents of any ‘slot’
within a packet. The Rapid Sample Packet
allows operations personnel to specify which
telemetry ID’s, and hence which telemetry
items, to sample as fast as 10 Hz. Due to the
high frequency capability, only four items are
allowed at a time. When commanded, the
flight software will then sample the four
telemetry items and place ten consecutive

4

samples of each in the packet for
transmission. The Programmable
Engineering Packet allows for a larger set of
items (up to 28) at frequency ranges much
lower than the Rapid Sample Packet. These
packets provide a flexible means of de-
bugging problems on the spacecraft, as well
as allowing for telemetry arrangements not
anticipated by the pre-defined packets.

 II. SNOE Flight Software

 SNOE Flight Software Environment

 Development Environment

The SNOE flight software will be
developed using Borland C++ compiler,
linker, and de-bugger on a 386 personal
computer. An additional set of hardware that
mirrors the flight environment is used to
perform all testing prior to integrated testing
with the flight computer and spacecraft. This
additional set of hardware consists of an Intel
186 processor, referred to as the evaluation
board, with complete memory and interface
electronics. A simple RS-422 serial digital
interface connects the development 386
personal computer and the evaluation board
to the flight computer for loading code.
Vendor supplied monitor programs on both
the evaluation board and the flight computer
provide the necessary de-bugging interface
for testing. The code will be developed on the
386 PC, tested on the evaluation board, and
finally loaded on the flight computer. A
separate UNIX workstation using RCS, a
standard revision control utility, maintains a
copy of all current versions of code in order
to control the flight software development.
With a small development team, LASP does
not expect security issues to impede the
development, yet access to released code is
strictly limited. The SNOE flight software
team consists of a LASP professional, a
graduate research assistant, and two or more
undergraduate students as programmers.

 Flight Environment

Small satellites often cannot afford the
extensive effort required to develop a custom
flight computer. The commercial-off-the-
shelf (COTS) solution usually provides a less
than perfect fit to a spacecraft, unless the
commercial product allows for some custom
expansion. The SNOE team is using and
customizing a computer from Southwest
Research Institute. The SC-4A Space Flight

Computer is a 80C186 based computer with a
10 MHz clock frequency and the capability
for bus expansion. The flight computer
comes equipped with up to 24 Mbytes of
mass data storage, 512 Kbytes static RAM,
and 256 Kbytes EEPROM, all error detected
and corrected. The SNOE team only utilizes 8
Mbytes of the mass data storage. LASP has
also developed a custom daughterboard for
interface between the spacecraft and the flight
computer. LASP has chosen not to use the
available 80C187 co-processor. Standard
communication interfaces are built-in.

 The Main Loop

The ‘main loop’ is simply a set of
functions that repeats indefinitely. The SNOE
flight software’s main loop is unique,
however, in that it performs some functions
not typically associated with software. For
example, the SNOE flight software handles
collection of telemetry where a hardware
Digital Telemetry Unit (DTU) is traditionally
used. This is a common small satellite
approach due to the enormous expense of
hardware development. Since this function
requires rigorous timing, software that
executes functions in a well defined manner
is desirable. The key to good flight software
design then is in how all the functions are
allocated, and how the main loop handles the
execution of those functions.

 A Modular Approach

Spacecraft functions handled by the
on-board computer include such tasks as
processing commands, storing science and
engineering data, and synchronizing
spacecraft activity. A group of related
functions can be handled by a single set of
software code, i.e., a module. Separation of
functions into modules opens the door to
parallel development, test, and integration.
These favorable qualities usually convince the
casual reviewer as to the merits of modular
design, while also satisfying the
programmers that have to deal with complex
systems. Addition of new functionality
requires only the development of a new
module or an addition to an existing module,
not the re-design of the entire system. The
SNOE team then separates functions into
high and low levels, based on the type and
frequency of a given function. High-level
modules handle complex groups of functions
such as assembling packets while low-level

5

modules perform simple but frequent
functions such as memory access.

 The Main Three High-Level Modules

The first ‘division’ of functions into
modules effectively separates the uplink from
the downlink. The SNOE team further
divides the downlink into functions that are
hardware synchronous and functions that are
driven by events on-board. These two
divisions result in three main modules:
Execute Commands, Build Packet, and
Transmit Data. Execute Commands handles
all command processing while, together,
Build Packet and Transmit Data handle the
telemetry collection and transmission
respectively. These main three modules
comprise the majority of all functions
performed by the flight software. Fig. 2
illustrates the three main modules with the
relationship between the ground, the flight
software, and the spacecraft.

G
ro

un
dFlight Software

Build
Packet

Transmit
Data

Execute
Commands

Sp
ac

ec
ra

ft
Fig. 2 Main High-Level Modules

The custom daughterboard handles all low-
level functions for command reception and
telemetry transmission such as bit sync and
error detection, including a minimal
command decoder. Still, the majority of all
command processing and virtually all
telemetry processing occurs in software. The
conventional hardware Command Decoder
Unit (CDU) and DTU have been replaced by
software modules.

 Other High-Level Modules

To complete the division of functions,
the SNOE team uses an additional six high-
level modules. These modules handle (among
other things) all stored command processing,
stored command execution, and closed loop

attitude control. LASP intends to control the
spacecraft attitude in an open loop fashion,
but includes a closed loop attitude control
module for safing. (The control algorithm
employed is a “B dot” law that attempts to
align a tumbling spacecraft orbit normal using
the Earth’s magnetic field.) As mentioned
before, the flight software performs some
functions usually implemented in hardware.
Another case in point involves adjusting the
instrument start delays when the roll error of
the spacecraft exceeds an unacceptable
threshold. The software literally sends itself a
command to route to the instruments for re-
configuration. This continual instrument
adjustment lessens pointing requirements on
attitude control while reducing the complexity
of the instrument electronics. By allocating
this set of functions to a module, the software
can perform the auto-correction with minimal
impact on the design.

 A Deterministic Approach

One key to success has been satisfied
with proper functional allocation to modules.
The remaining key is to execute these
functions-now modules-in a manner that
absolutely ensures time and CPU resources
are available. Typically, the modules are
placed in the main loop encased with a
dizzying array of flow control statements
(e.g., if-then-else or while statements). This
approach, however effective, is a
cumbersome solution that is usually
extremely difficult to debug. Additionally,
concerns for CPU resources become a
challenge to analyze without extensive
testing. The SNOE team avoids these pitfalls
with a vector approach. A main loop that
simply steps through a table and uses a vector
stored there to call the proper module after a
given time interval turns the flight software
into a deterministic system whose behavior is
readily analyzed.

 The Distribut ion Vector Table

Imagine that one second of CPU time
is actually a set of 40 pieces of time, each 25
milliseconds in duration. Further, imagine a
table of 40 “pointers,” or vectors, to high-
level modules. A main loop that, every 25
milliseconds, executes the high-level module
at the location pointed to by the vector in the
table fixes the start time for every function
on-board. The SNOE team refers to this table
as the distribution vector table (DVT). The
main loop then steps to the next vector at the

6

next time interval. High-level modules that
require greater than 25 milliseconds of CPU
time are allocated more than one consecutive
‘piece’ of time. The SNOE main loop is
guaranteed to execute all high-level modules
within the DVT every second of CPU time. If
a module requires an execution frequency
greater than the one second duration of the

Pointer to Named Module

Start
Time

(msec)
Time ‘Piece’

31

32

33

34

35

36

750.0

775.0

800.0

825.0

850.0

875.0 Build Packet

Transmit Data
(Empty)

Execute Commands
Build Packet

Build Packet

DVT

Fig. 3 Sample Distribution Vector Table

loop, repeated calls to that module are
included in the DVT. Fig. 3 shows a sample
vector table with start times and pointers to
high-level modules. Each module checks
whether or not that module should execute
using a standard call to a low-level module
(containing all flow control statements) based
on the current configuration of the flight
software. If a module called by the main loop
is not supposed to execute, the main loop will
still wait 25 milliseconds before stepping to
the next vector in the DVT. If there is no
module at the location (an empty vector call)
the main loop also waits before executing the
module at the next vector. This rigorously
fixes the start time of each module, providing
a means to analyze software timing issues
with millisecond accuracy. Also, the vector
approach makes replacement or re-ordering
of the module sequence a simple matter of a
vector change.

Execution of the high-level modules
is now a matter of populating the DVT in an
intelligent manner. The SNOE team will first
identify the execution duration of each high-
level module using the evaluation board.
Current estimates are based on source lines of
code (SLOC) and processing speed. Not all
of the ‘pieces’ of CPU time in the DVT are
used, leaving room for addition of new
modules, or expansion of current modules.
This deterministic approach provides a means

to analyze the flight software time and
resource usage prior to any actual
programming. The explicit allocation of CPU
time to module execution assures complete
coverage of flight software functional
requirements. The SNOE team plans to
integrate flight software with the spacecraft in
July 1996.

1 CCSDS Packet Telemetry, November 1992, Blue
Book Doc. No. 102.0-B-3
2 CCSDS Telecommand, January 1987, Blue Book
Doc. No. 202.0-B-1

