
1
M. A. Salada 12th AIAA/USU Conference on Small Satellites

Software Lessons from the University of Colorado’s Student Nitric Oxide Explorer

Mark Andrew Salada*, Sean Ryan†, John Donnelly†, Gail Tate†

Johns Hopkins Applied Physics
Laboratory

†Laboratory for Atmospheric and Space
Physics

Johns Hopkins University University of Colorado at Boulder
Mark.Salada@jhuapl.edu Sean.Ryan@lasp.colorado.edu

(443) 778-7267 (Baltimore)
(240) 228-7267 (Washington)

John.Donnelly@capela.colorado.edu
Gail.Tate@lasp.colorado.edu

* Mark Salada was a Graduate Research Assistant at the Laboratory for Atmospheric and Space Physics in Boulder,
Colorado during SNOE’s design and construction, prior to accepting a position at the JHU Applied Physics Labora-
tory in Maryland.

 Abstract

The Student Nitric Oxide Explorer
(SNOE: pronounced “snowy”) is a student
built, low cost mission intending to demon-
strate meaningful science in space for a frac-
tion the cost of conventional satellites. The
program is the first of two University Space
Research Association (USRA) managed Stu-
dent Explorer Demonstration Initiative
(STEDI) programs, funded by NASA. The
student team at the Laboratory for Atmos-
pheric and Space Physics (LASP) in Boul-
der, Colorado, participated in every aspect of
design, construction, test, and operation of
the satellite. In particular, the flight software
team successfully demonstrated the student
team approach with a professional mentor
that the program hoped to pioneer. The small
team of one graduate and three undergradu-
ates successfully completed the task with
minimal supervision. The team implemented
several novel ideas that establish software as
the single most important key in low-cost
small satellite success. Among these novel
ideas, three design features stand out as “role
models” for future missions at LASP, and
perhaps for any other university organization
intending to produce small satellites. These
are the Power-On/Reset (POR) design that
uses two software images, the Command
Storage Management (CSM) design that sorts
its own memory, and the telemetry design
that employs programmable packets. The im-
portant thing, however, is to recognize the
value of using a student team with a profes-
sional mentor, where the untapped student
body resources on university campuses

across the nation diffuse the cost of develop-
ing space systems.

 A Mission Using Software

SNOE is the first of three projects for
the University Space Research Association
Student Explorer Demonstration Initiative
program demonstrating student involvement
with small satellite production. SNOE from
the University of Colorado, the Tomographic
Experiment using Radiative Recombinative
Ionospheric EUV and Radio Sources
(TERRIERS) from Boston University, and
finally the Cooperative Astrophysics and
Technology Satellite (CATSAT) from the
University of New Hampshire are attempting
useful science in space for about $4.5M, not
including launch vehicle. SNOE successfully
launched in February of 1998. The
TERRIERS satellite launches in December of
1998. The scientific objectives for the SNOE
satellite validate a temporal relationship be-
tween nitric oxide density and solar soft x-ray
radiation in the thermosphere. The additional,
complimentary objective for SNOE is to
prove that a complete satellite is possible with
a student team for a tenth the cost of most
satellites. LASP intends to demonstrate to
industry that the use of students for every
phase of the mission is an acceptable, even
beneficial approach. The NASA ‘smaller,
faster, and cheaper’ principle faces a strenu-
ous test by our program. SNOE is a 254 lb.,
580x550 km orbit spinning satellite that scans
the limb of the Earth for nitric oxide spectral
emissions with a UV-spectrometer while si-
multaneously measuring the soft x-ray emis-
sions from the sun with photometers. A third

2
M. A. Salada 12th AIAA/USU Conference on Small Satellites

nadir pointing instrument measures auroral
emissions over the Earth’s poles. It’s very
possible to complicate a small satellite from
the start with over-ambitious and unrealistic
science objectives. An important and perhaps
vital reason for SNOE’s success is the prin-
cipal investigator’s clear and simple science
goals. The science team greatly reduced the
amount of data handled every pass, with only
two ground passes a day. For example, in-
stead of using a LASP CODACON imag-
ing device for snapshot of the continuous
spectra of nitric oxide emissions, the science
team reduced their data requirements to only
two important spectral bands. This decision
had a profound effect on the complexity of
the instrument detectors and electronics, with
corresponding simplifications throughout the
spacecraft. Key decisions very early in the
project, like the removal of the imager, paved
the way to later successes.

For example, spacecraft designers
placed a great deal of spacecraft functionality
in software as opposed to custom hardware
components. A single commercial processor
coordinates all instrument science, health and
safety, and command and data handling
functions for the spacecraft, instead of the
conventional multiple processors and hard-
ware boards to do the same. Instead of add-
ing a redundant processor, the means to
switch memory mediums, and hence soft-
ware images within the same computer ac-
complishes fault redundancy without the
doubled hardware cost. The stored command
approach relieves mission operations from
tedious memory management by “sorting” the
up-linked commands on-board. Actually, the
software “indexes” the commands, as op-
posed to sorting, for increased performance.
This management handles both the absolute
time-tagged commands as well as the concur-
rent ‘block’ commands, which execute rela-
tive to one another in time.

Finally, the SNOE telemetry design
embodies the full spirit of the Consultative
Committee for Space and Data Systems
(CCSDS) packet telemetry recommendation,
but with a twist. Mission operations has the
ability to literally select the contents of two
packets before and after launch, and recon-
figuring them as the mission matures. This
feature enables debugging during integration

and test, and most importantly during flight.
This paper is a follow-up to a previous paper
that describes the design of the flight soft-
ware prior to launch, “The Student Nitric
Oxide Explorer (SNOE) Telemetry and Flight
Software Design.”i

 A Brief System Summary

The software designers chose ANSI
C as the embedded system language, with in-
line 80C186 processor assembly where ap-
propriate. SNOE runs its own operating sys-
tem, a deterministic linear scheduler with
vectored module calls. Using a commercial
compiler and linker, Borland C++ 4.5, de-
velopers employed the ‘large’ memory model
to facilitate memory patching (described be-
low). Another commercial product, Para-
digm’s LOCATE, enabled explicit control
of the final embedded image. Using a 386
development computer, and a 186EB Intel
Evaluation board, programmers designed,
coded, and tested all software with an incre-
mental release approach. The first release was
the image in UVPROM. The final releases
were all varying levels of functionality in
EEPROM. There are about 10,000 lines of
code in the entire design. With three under-
graduates on the team, the division of labor
roughly allocated one student to command-
ing, telemetry, and memory/POR each. Only
one student, now a LASP professional, re-
mains on the SNOE team supporting the
flight software during mission operations.

 Power On/Reset

The most popular buzz phrases engi-
neers use to boost the appearance of quality
in a system are ‘fault tolerance,’ and
‘redundancy.’ Considering the large amount
of money spent on today’s satellites, most
engineers take these phrases very seriously.
For the small satellite designer however,
these phrases lose their luster in the face of
monetary phrases like ‘out of funds,’ or
‘broke.’ Only very few systems on SNOE
are redundant. There are two battery pack-
ages, more solar panels than are necessary,
and fail-safe activation switches for initial
turn-on. Like other small satellite budgets,
the sheer cost of spaceflight computer hard-

3
M. A. Salada 12th AIAA/USU Conference on Small Satellites

ware preempted SNOE from using a redun-
dant computer (CPU). To regain some of the
hardware redundancy lost by using a single
on-board computer, SNOE incorporates a
double boot path within the computer for
power-on and reset. Specifically, two sepa-
rate software programs exist in the SNOE
computer, each with the capability to carry
out the minimum scientific requirements for
the mission. The custom hardware interface
board houses the capability to decode a
ground command to switch between the two
images at reset. Furthermore, these separate
images reside in physically different memory
mediums, increasing the ‘fault tolerance’ by
decreasing the types of failures that will com-
pletely disable the system.

The Southwest Research Institute
(SwRI) SC-4A flight computer houses 64k
bytes of UVPROM, and 256k bytes
EEPROM. Upon delivery, the UVPROM
held only the monitor code as developed by
SwRI. The SNOE team replaced these chips
with the minimally functional software im-
age. This image is perhaps the most rigor-

ously tested component in the entire space-
craft. In UVPROM, the flight software han-
dles all commanding, telemetry, and
EEPROM programming. Although difficult,
the image in UVPROM alone can complete
the scientific program. (The difficulty arises
in an instrument pointing requirement, and
the difficulty of maintaining it in view of the
Earth oblateness and atmospheric deviations.)

Ideally, two separate teams develop
and verify these flight software images to add
to reliability. However, the SNOE program
accomplished both sets of flight code with the
same student team. At launch, the UVPROM
image measured 58k bytes in size, and the
EEPROM image was 120k. For initial turn-
on and any subsequent ‘cold’ boot, the de-
fault software image is the UVPROM image.
During the early orbit campaign, the opera-
tions team felt confident enough to ‘switch’
over to the EEPROM image on the fifth con-
tact (within 10 hours of launch). Both images
continue to work exactly as expected. To
date, there have been no software-related
computer resets.

StartUp Main

Build Packet

Execute Commands

Transmit Data

General Utililities

Change Mode

ROM
DATA

Link CSM

Check CSM

StartUp Main

Execute Commands

Transmit Data

General Utililities

Change Mode

Bdot Control Pad

Build Packet

Execute Commands Pad

Transmit Data Pad

Change Mode Pad

Bdot Control Link CSM PadLink CSM

Build Packet Pad

General Utililities Pad

Calculate Delay Calculate Dly Pad Check CSM PadCheck CSM

Library Utilities

ROM DATA

UVPROM EEPROM

Figure 1. The UVPROM image and the EEPROM image each contain the minimal set of flight software function-
ality for mission success. The EEPROM image contains additional modules for closed loop attitude control and in-
strument timing corrections (highlighted blocks). Note that every EEPROM module that the software team expects
to mature on orbit has a pad immediately following the original. The ground can load a new version, possibly patch-
ing a new module up to twice the size of the original without affecting the rest of the image.

4
M. A. Salada 12th AIAA/USU Conference on Small Satellites

The SNOE power on and reset ap-
proach demonstrates, by including the means
to switch memory mediums within the same
computer to execute different images of flight
software, cost effective small satellite redun-
dancy and fault tolerance without the doubled
computer hardware cost of two CPUs.
SNOE uses the spacious EEPROM in a more
sophisticated way. In addition to the minimal
set of telemetry, commanding, and stored
commanding functionality, EEPROM in-
cludes additional instrument pointing adjust-
ment and attitude recovery modules. Not only
is the functionality more sophisticated, but
the physical placement of all modules takes
advantage of the increased space. The ar-
rangement physically separates all modules
from each other (with a ‘pad’) to allow for
‘patching’ in flight. This way the ground can
add new software functionality, replacing
individual modules without re-loading the
entire software image (See Figure 1). Most
importantly, the EEPROM image corrects the
annoying software problems identified in the

rapidly developed UVPROM flight image. Of
course, none of the problems encountered in
the UV image were mission critical.

 Stored Command Management

All satellites require, in some facility, a
means to execute time-tagged commands to
support non real-time activities. In this re-
gard, SNOE is not unique. The command
storage management designers chose a ca-
pacity of 128 stored commands. These 128
commands execute at an absolute time, rela-
tive to UT, and are aptly named absolute
time-tagged (ATT) commands. Added to this
capacity are three ‘block’ commands (A, B,
and C), where each block holds 16 com-
mands. The commands in each block execute
relative in time to the start of the block. The
starting UT for a block is a separate com-
mand, ‘start block A,’ presumably located in
the ATT command buffer. All three blocks
can execute concurrently with the ATT com-
mands (See Figure 2).

(Maximum
block
command
capacity is 16)

Base Time 1

Base Time 2

Base Time 3

Base Time 4

Base Time 5

Base Time 6

Base Time 7

Base Time 8

Base Time 9

Delta Time 1

Delta Time 2

Delta Time 3

Delta Time 4
Execute Block A

Execute Block B

Turn On XMTR

Turn Off XMTR

Execute Block B

Execute Block B

Delta Time 1

Delta Time 2

Delta Time 3

Delta Time 4

Turn on SXP HV

Open SXP Door

Close SXP Door

Turn off SXP HV

Record PRS

Turn on Axial Rod

Turn off Axial Rod

Stop Record PRS

(Maximum
duration for a
block is 18.2
hours)

. . .

. . .

. . .

. . .

. . .

etc.

ATT Buffer
Block A

Block B

Block C

Base Time = CTD + rollover adjustment
fixed at link

CTD = UT (as set by ground)

CTD is synchronous with VTCW
Delta Time 1

Delta Time 2

Delta Time 3

Delta Time 4

. . .

Turn off AP HV

Send AP Command (low data mode)

Send AP Command (regular data mode)

Turn on AP HV

Figure 2. The command storage management buffers sort and execute from a base time calculated on-board at time
of link. The actual base time tags are not visible to the ground. The ground sends all stored commands with CTD
tags and then commands the link. The system manages its own memory spaces, continually cycling empty slots for
new commands. The designers intended the block commands to act as short scripts to reduce the volume of com-
mands in the ATT buffer.

5
M. A. Salada 12th AIAA/USU Conference on Small Satellites

It is also possible to ‘link’ the blocks
by placing a ‘start block’ command in one of
the other blocks. In theory, this provides an
extensive relative command capability. How-
ever, the primary intent for block commands
is to reduce repeated sets of commands in the
ATT. For example, to conserve the sensitiv-
ity of the Auroral Photometer detectors, the
satellite operations team may choose to cycle
the high voltage on the instrument during the
daylight. The turn-off and turn-on sequence
is a perfect candidate for the block buffers
since it contains about a half dozen com-
mands to execute in sequence (See Block ‘C’
in Figure 2). With approximately fifteen or-
bits a day, the sum total commands would
consume a majority of the ATT command
buffer. Utilizing the block commands, the
ATT needs only a total of fifteen ‘start block’
commands.

Two key decisions drove the CSM
design. The first decision was to constraint
check the commands at execution time, rather
than up front during the sorting. In retro-
spect, this razor cut proved to be the one
most in Occham’s spirit. Piping all stored
commands through the regular real-time
command processing engine at time of exe-
cution greatly simplified the system. There
was therefore no need to develop and test a
separate command acceptance package for
time-tagged commands. Once past the hard-
ware checked error codes, and then past the
CCSDS command checks, the uplinked
stored commands reside on board untouched
until their time-tags expire. Only then does
the software check for constraints such as
duplicate commands, contradictory com-
mands, and bad command fields. The down
side is that stored commands uplinked to the
spacecraft during a pass may only later mani-
fest themselves as bad, or poorly con-
structed. For event critical stored command
actions, this can be fatal to the mission objec-
tive. However, due to the principal investi-
gator’s mission planning, SNOE’s science
schedule is periodic, and unrecoverable
event-critical stored command events on sub-
sequent orbits are rare.

The second key CSM design decision
came more out of need than out of clever de-
signing. One of the most difficult issues for
stored commanding is marking time with fi-

nite-size counters. Any sixteen or 32-bit
counter has the unsettling feature of rollover.
In the flight software itself, this does not
pose much of a problem. Most programs
easily manage large counters. However, the
limiting width in a command time-tag is not
on board, but actually in the command itself.
For example, the width of the time tag for
relative (block) commands is 16 bits. At the
one Hertz command poll rate, this limits the
delta time to just over 18 hours. SNOE mis-
sion operations would like (understandably) a
24 hour delta time ability that better matches
the ground passes schedule. Due to the width
limited duration, maintaining a continuous
time reference for commanding is a chal-
lenge. The on-board commanding reference
for the ground is the fully adjustable Com-
mand Time-of-Day (CTD) counter that is
synchronous to the hardware Vehicle Time-
Code Word (VTCW). The CTD is a 22-bit,
one Hertz counter, which the ground uses to
synchronize the VTCW with UT. Of course
this means that, at any POR, the ground
could set the CTD close to its modulo, and
cause a discontinuous hiccup in the command
time reference before the maximum duration.
To avoid the hiccup, SNOE stored com-
manding maintains a virtual time for com-
mands in the ATT command buffer that is not
visible to the ground. This time, the base
time, is the actual reference by which com-
mands will sort and execute. The algorithm
correlates the base time to the command time-
of-day at the same time it sorts, or 'links,'
commands. The base commanding reference
takes full advantage of the width of all count-
ers, avoiding the discontinuous rollover of
the CTD.

The flight software maintains the
same virtual, ‘base,’ time for the ATT com-
mand buffer and block reference. Because of
this, the CSM cannot link (sort) commands
while a block, or blocks execute. The time
reference for commands within the block
would be out of alignment with those that
have already executed at time of sort. Mission
operations registered this limitation as a com-
plaint well before launch. The preferred ar-
rangement would allow for a re-link of ATT
commands while one, or any of the blocks
still has pending commands. To accommo-
date linking commands while a block exe-
cutes, the flight code would have to maintain

6
M. A. Salada 12th AIAA/USU Conference on Small Satellites

a separate base time for each of the blocks, in
addition to the base time for the ATT com-
mand buffer. The complexity involved dis-
suaded the flight software team from imple-
menting separate base time for each stored
command buffer. However, the natural en-
hancement to the design would provide for
multiple base time references.

 Lessons from a Past Mission

The SNOE stored command design
pays its respect to the lessons learned on the
previously successful LASP and University
of Colorado endeavor, the Solar Mesospheric
Explorer (SME). NASA launched SME in
1981 with a two year expected lifetime, and
continued to operate until 1987, teaching stu-
dents for over six years. As the first student
run satellite ever operated entirely from a uni-
versity, SME taught the novice and expert
alike that in-flight design features, good or
bad, magnify ten-fold on the ground. A key
lesson from those days is that the complexity
of memory management for stored com-
manding consumes a great deal of ground
resources. The most tedious ground activity
was tracking the physical memory locations,
and status of uplinked commands.

One of the main goals in the SNOE
CSM design is to remove the visibility of
physical memory addressing for command
storage and execution. The flight software
team accomplished this design goal using an
indexing sort algorithm for all CSM buffers.
The algorithm comes from Numerical Reci-
pes QuickSort indexing routineii. The algo-
rithm required two additional indexing arrays
for the sort, and the team introduces another
index array for management of free slots.

The basic approach is to sort the
commands while continually cycling the
physical memory addresses once commands
expire and execute. The CSM statically de-
clares all stored command memory, and each
command is the same size. The flight soft-
ware prevents memory loads from stored
commanding. As mentioned before, the
commands received on-board pass hardware
and preliminary protocol checks before the
CSM has access to them. At link the flight
code only examines the time tag, and the field
that delineates between ATT and block com-
mand types. Performing no other checks at

that time, the software creates the base time
references, and sorts. This is the only func-
tionality at link time. To complete the stored
commanding system, recall the initial razor
cut in the design. Each second, another soft-
ware module simply queries the top-most
available command in each of the stored
command buffers. The module then places
expired commands in the regular pipeline for
command processing. The module continues
to pull commands out of the buffers until it
finds a time tag that has not expired. Com-
mand processing discards duplicate com-
mands only at this time.

The software team based their deci-
sion to use the QuickSort algorithm on pro-
viding the ability to continually link new
commands into the ATT command buffer
while not to requiring the ground to uplink
commands already sorted in time. The fastest
sorting algorithm possible seemed the appro-
priate choice. In retrospect, even though the
QuickSort algorithm is the fastest sorter
available for arrays as large as the ATT index
array, is has a worst case efficiency of N2.
Mission operations routinely links commands
in time order, even though they are not re-
quired to do so. This exercises the worst case
condition for QuickSort almost every link.
Heap Sort iii may be a better algorithm choice
to perform the sorting, with appropriate
modifications for indexing. In any case, the
QuickSort approach works perfectly. The
time slice allocated for the link is 200 milli-
seconds, and the worst case link measured
before flight was 91 milliseconds, real time.

There have been two patches loaded
to the spacecraft since launch, both just one
word in size. Each fixed a bug in the CSM
functionality. Although not the most compli-
cated set of code on-board, the CSM proved
to be the most arduous to test thoroughly.
Furthermore, mission operations, at time of
writing, has not taken advantage of the block
commanding. There are several reasons for
their exclusion at this time, one being the near
flawless performance of the ATT commands.
Mission operations intends to utilize the block
command functionality as time permits.

 Programmable Packets

Telemetry design for SNOE started as
a Time Division Multiplexing (TDM) system

7
M. A. Salada 12th AIAA/USU Conference on Small Satellites

with bandwidth allocations nearly identical to
SME. The designers assumed a static, deter-
ministic telemetry allocation between engi-
neering and science data, based on a finite
number of telemetry modes. With packetized
telemetry streams, a static declaration of
bandwidth is not necessarily appropriate.
SNOE software designers recognized the
need for a flexible system and argued for a
‘programmable’ element to the telemetry very
early in the program. The result is a pair of
programmable packets in which ground op-
erators interactively choose telemetry items,
fill available ‘slots’ in generic packets, and
send them to the ground at an adjustable rate.
Note that these programmable packets are in
addition to a set of fixed engineering packets,
as described in reference [i]. Admittedly, this
has an effect on the bandwidth that only
probability and statistics analyze well. The
added flexibility however completely out-
weighs any unknowns induced by an unde-
terministic system.

 The Programmable Engineering
 Packet

The first step in enabling a program-
mable stream is organizing all on-board te-
lemetry. The SNOE flight software places all
telemetry items in a global structure, called
the Master Telemetry Index (MTI). The MTI
is actually an array of the following structure:

typedef struct {
item_type type;
union {

volatile dword I;
word huge *p;

} value;
word size;
word PE_size;
word DB_Address;
byte Line;
byte MUX;
word Mask;

} Telemetry_Point_Type;

With all items intended to be visible to the
ground located in such an array, the array
index itself becomes the unique telemetry
point ID. This organization greatly simplifies
the engine that generates all packets. The en-
gine merely loops through an array of MTI

indices until it finds a unique identifier, End-
of-Packet (EOP), progressively adding items
to the data field of the source packet. There is
an array of MTI indices for each packet on
board, each carefully terminated with an
EOP. This generic approach to packet con-
struction is scaleable. Only the total number
of elements in the MTI array limits the total
number of telemetry items selectable. Note
that there are two fields for the size of the te-
lemetry point, “size,” and “PE_size.” The
.size field is the actual size, in bits, of the te-
lemetry point. The .PE_size is the item .size,
rounded to the width of the most appropriate
slot in the PE packet.

16-bit sample 1

16-bit sample 2

16-bit sample 3

32-bit sampleSlot ID 1

Slot ID 2

Slot ID 3

Slot ID 4

Slot ID 5

Slot ID 16

...

PE Source Packet

Data Field

Secondary Header (time stamp)

Primary Header (CCSDS)

8-bit Sample 1

8-bit Sample 12

Figure 3. The Programmable Engineering packet data
field contains alternating ID slots and samples. The
IDs correspond to MTI indices, uniquely identifying
each telemetry item. The OASIS-CC ground software
uses the ID to update the correct database item in real
time.

The PE packet is a standard CCSDS
source packet, with a data field of alternating
slot IDs and slots (See Figure 3). There are a
fixed number of slots, all with predefined bit
widths. These slots are actually telemetry
points themselves, enabling the same engine
that generates the other packets to also gener-
ate the programmable engineering packet.
There are a total of sixteen slots in the packet.
One 32-bit slot, three 16-bit slots, and twelve

8
M. A. Salada 12th AIAA/USU Conference on Small Satellites

8-bit slots comprise the data field. A slot ID
field immediately precedes each slot. When
filling the slots, the command constraint
checker compares the requested item’s
.PE_size field with the selected slot size, and
accepts the selection only with a match. As
mentioned before, .PE_size fields are
rounded-up values for the width of telemetry
points. Each .size field rounds ‘up’ to one of
the three allowed sizes in the PE packet. For
items greater than 32 bits in size, the engine
telemeters only the most significant 32 bits.
For telemetry items less than 8 bits, such as a
status bit, the engine zeros the remaining
seven bits in the field. Prior to launch, mis-
sion operations selected default items for each
slot, enabling the immediate transmission of
the packet. Although clearly not the most ef-
ficient way to deliver telemetry, the flexible
nature empowers mission operations in a
manner not previously available on missions
like SME. Once mission operations com-
pletes the packet contents, additional com-
mands select the packet transmission period
to anything between and including 2 seconds
to 60 seconds, on the second. PE packet pro-
vides a quick look, or comprehensive minute-
by-minute dwell over a long interval of time
on any combination of items in the MTI.

One of the limitations of spacecraft
telemetry systems is the corresponding
ground station capability to parse the packets
in real time. One of the SNOE challenges in
the ground was handling the PE packet once
it arrived at the Program Operations Control
Center (POCC) in Boulder. Using a built-in
feature, the mission operations team uses a
LASP product, the Operation and Science
Instrument Support Command and Control
(OASIS-CC) software to automatically parse
the packet, and update the appropriate te-
lemetry item in the real-time database.
OASIS-CC triggers off of the arrival of the
packet based on the source packet application
id in the primary header. Mission operators
essentially never see telemetry from the
packet itself. They only see the selected items
updating at the newly commanded rate. This
seamless integration of the programmable
engineering packet proves most valuable
during a real-time pass, where time is short.
SNOE mission operations uses the program-
mable packet primarily during a ground pass
to maximize efficiency.

Interval

Slot ID A

Slot ID C

Slot ID B

...

PRS Source Packet

Data Field

Secondary Header (time stamp)

Primary Header (CCSDS)

Slot ID D

Sample 1

Sample 10

A B C D

A B C D

Figure 4. The Programmable Rapid Sample packet is
essentially identical to the PE packet in function, but
it handles a much higher sample rate for fewer items.
Ground users reconstruct a sample time with the time
tag in the secondary header, and adding the appropriate
multiple of the interval time. The SNOE team
uses the PRS packet mainly for detailed transient
behavior analysis prior to and in flight.

 The Programmable Rapid Sample
 Packet

In the event that the two-second
transmit period for the PE packet is insuffi-
cient, the Programmable Rapid Sample
(PRS) packet handles telemetry items at a
much higher sampling frequency. With a se-
lectable sampling frequency range of 5 Hertz,
2.5 Hertz, 1.25 Hertz, and 0.75 Hertz, the
PRS packet provides a mechanism for de-
tailed engineering debugging in flight. The
packet design is considerably different than
the PE packet. First of all, the increased sam-
ple frequency limits the number of selectable
items to four. Furthermore, only 8-bit slots
are available. With the decreased number of
items, the packet data field is more compact.
Deciding to place ten samples of the four
items in a single packet ties the packet con-
struction and transmission to a factor of ten
times the sample period (See Figure 4). For

9
M. A. Salada 12th AIAA/USU Conference on Small Satellites

example, a sample frequency of 5 Hertz
yields a transmit period of two seconds. This
way, the ground indirectly controls the
transmit period, and the consequent band-
width or storage impact of the packet.

Just as with the PE packet, the PRS
packet contains the item IDs for the selected
telemetry points. In this case the format
groups the four IDs at the front of the packet
instead of alternating between samples as in
the PE packet. The real-time parsing of the
PRS packet makes less sense. Only the last
value in each packet will be visible to opera-
tors. The packet mainly provides a post-pass
detailed analysis capability to small sets of
items. Candidates for the PRS packet include
solar array voltages when the satellite crosses
the terminator, or instrument voltages and
currents during a ‘switch-on.’ (All analog
items on SNOE are a filtered 8-bit A/D con-
version through the SC-4A.)

PRS packet construction is a slight
departure from the generic packet generator
since it has the merit of being the only packet
not completely constructed at once. The same
MTI IDs apply to the PRS packet, and the
selectability appears the same to the ground.

A natural expansion of the SNOE te-
lemetry design is to make all telemetry pack-
ets programmable in the spirit of the PE and
PRS packets. More sophisticated query abil-
ity with the MTI could develop into a fully
populated real-time database in space. The
concepts for such an advanced flight system
are not new, but perhaps industrial confi-
dence in the approach lags behind the capa-
bility. To that, the SNOE team encourages
industry to turn to the university student body
for ideas and people.

 Other Lessons from the SNOE Sof t-
 ware

A detailed description of what the
team did well on the software is not neces-
sarily the only lessons learned during the de-
velopment. There are, of course, a few re-
grets. A great deal of time and work may
have been saved had the team allocated more
effort to the POR, or ‘boot,’ design earlier in
the program. Initially, the emphasis for the
software team focused on commands and te-
lemetry, relegating the boot design to an
“after the hardware is finished” position. This

caused more late hours, loud conversations,
and basic turmoil than any other aspect of the
flight software. The SNOE team hereby en-
courages small satellite software developers
to stress the hardware developers as early as
possible concerning necessary boot se-
quences, safing, and start-up modes. When
in doubt, keep it simple.

Another “gotcha” that developers re-
gret is absence of a basic memory scrubbing
utility that might identify Single Event Upsets
(SEU), and correct them. The team consid-
ered the utility, at the time, an unnecessary
task. In retrospect, being able to identify
when SEUs occur during an orbit might lead
to safer operations. The utility’s absence does
not endanger the mission in any sense, but
environmental studies are now impossible
without uploading a module.

Finally, the most painful lesson is not
a technical lesson. When choosing a software
development team, using students that don’t
have software backgrounds introduces a dif-
ficult quality assurance burden. We felt that
hiring students with electrical engineering, or
computer architecture knowledge might aid
with embedded system programming. How-
ever, computer science students, although not
well versed in satellite design, handle compli-
cated programming tasks most readily.

 Conclusion

This paper highlights just three ele-
ments of the flight software: the dual-image
power-on/reset, the self sorting stored com-
mands, and programmable packets. Briefly,
the major lessons from the experience are:

• Use two software images instead
of two computers.

• Sort stored commands on board.
• Accommodate separate absolute

and relative non real-time com-
manding capabilities.

• Organize on-board telemetry to
allow for programmable packets.

• Use programmable packets!
• POR requires a major effort
• Include a memory scrubbing util-

ity

10
M. A. Salada 12th AIAA/USU Conference on Small Satellites

• Computer science students make
the best programmers

Other features of the flight software,
such as on-the-fly reprogramming, the ‘large’
memory model organization in EEPROM,
and the automatic instrument delay correction
are worth mentioning. Furthermore, the mis-
sion operations capabilities that the SNOE
team demonstrates daily warrant commenda-
tion. For more detail on the SNOE satellite,
visit the SNOE homepage at
http://lasp.colorado.edu/snoe. Also, satellite
engineering telemetry is available, completely
summarized and plotted, automatically up-
dated within thirty minutes of a pass at:
lasp.colorado.edu/snoe/data.html.

The single most important lesson
from the SNOE project is this: using students
to make flight software for spacecraft works.
During the Solar Mesospheric Explorer days
in the early 1980s, the LASP management
established itself as the experts in running
student employed teams. LASP re-establishes
itself as a leader in university-industry coop-
eration with the SNOE team success. The
flight software exceeds the minimal mission
requirements and proceeds to raise the level
of functionality expected from small satellite
software systems. We expect that, at the very
least, on-board memory organization of
stored commands, and some sense of pro-
grammable telemetry will become common
flight software features, if they are not al-
ready. Industry should be encouraged to, and
feel compelled to use students in every aspect
of spacecraft construction. It is an inexpen-
sive resource industry cannot afford to ig-
nore, especially since today’s graduate and
undergraduate students are more computer
proficient than ever.

i Salada, M. A., and Davis, R. L., “Student Nitric

Oxide Explorer (SNOE) Telemetry and Flight
Software Design” Supplemental Proceedings of
the 9th Annual USU Small Satellite Conference,
Logan, UT, 1995

ii Press, W. H., Numerical Recipes in C: The Art of
Scientific Computing Second Edition; Cam-
bridge University Press, New York, 1992;
pp.338 - 341

iii Ibid. pp. 336 - 338

