Comparison of Cassini UVIS reflectance spectra of Saturn's rings to compositional models

Todd Bradley

August 13, 2014

Overview

Review of Chandrasekhar-Granola bar model

Compare FUV ring spectra to two-component compositional models

- Van de Hulst Hapke model
- Shkuratov model
- Use two different mixing models
 - Linear mixture of optical constants
 - Discrete water ice and contaminant grains (add single scattering albedos)

Model discretely averaged spectra using Chandrasekhargranola bar model

$$\frac{I}{F} = A_B * P * \frac{\mu_o}{4(\mu + \mu_o)} \left[1 - \exp(-\tau_n / \mu) \exp(-\tau_n / \mu_o) \right]$$

$$T = \exp(-\tau_n / \mu)$$

$$= \frac{\left[S/W - H/W | \sin(\phi - \phi_{wake}) | \cot B\right]}{S/W + 1} \exp(-\tau_{gap} / \mu)$$

$$T_o = \exp(-\tau_n / \mu_o)$$

$$= \frac{\left[S/W - H/W | \sin(\phi_o - \phi_{wake}) | \cot B'\right]}{S/W + 1} \exp(-\tau_{gap} / \mu_o)$$

Assume power law phase function (Dones et al. 1993)

$$P = C_n (\pi - \alpha)^n$$
$$g = -\frac{1}{2} \int_0^{\pi} P(\alpha) \cos \alpha \sin \alpha d\alpha$$

Minimize D
$$D = \frac{1}{n} \sum_{i=1}^{n} (d_i - m_i)^2$$

Where i = 1 to n is over a range of phase angles and free parameters are A_B , d is the measured I/F, and m is the model I/F

Ring Particle Bond Albedo

Van de Hulst – Hapke Model

Cuzzi and Estrada (1998) used Van de Hulst to relate A_B to $\overline{\omega}$

$$A_{B} = \frac{(1-S)(1-0.139S)}{1+1.17S} \quad \text{where } S = \sqrt{\frac{1-\varpi}{1-\varpi g}} \quad \text{g = regolith grain}$$

$$\varpi = Q_s = S_e + (1 - S_E) \frac{1 - S_I}{1 - S_I \Theta} \Theta \qquad S_E = \frac{(n - 1)^2 + k^2}{(n + 1)^2 + k^2} + 0.05 \quad , \quad S_I = 1 - \frac{4}{n(n + 1)^2}$$

$$\Theta = \frac{r_i + \exp\left(-\sqrt{\alpha(\alpha + \varsigma)}2d_i/3\right)}{1 + r_i \exp\left(-\sqrt{\alpha(\alpha + \varsigma)}2d_i/3\right)} \quad \text{where} \quad r_i = \frac{1 - \sqrt{\alpha/(\alpha + \varsigma)}}{1 + \sqrt{\alpha/(\alpha + \varsigma)}}$$

n and k are the optical constants, d is the grain diameter, $\alpha = 4\pi k/\lambda$ and ς is the internal scattering coefficient

Shkuratov Model

- Requires geometric (physical, A_p) albedo
- Ratio of brightness of a body at g = 0 to the brightness of a perfect Lambert disk of the same radius and at the same distance as the body but illuminated and observed perpendicularly
- Previously I derived ring particle bond (spherical, A_s) albedos and ring particle phase functions

$$A_p = \frac{A_s}{q} \qquad q = 2 \int_0^\pi \Phi(g) \sin g \, dg$$

 $\Phi(g)$ is integral phase function, i.e. the relative brightness of a body at phase angle g normalized to its brightness at 0° phase angle.

q = phase integral

Ring Particle Geometric Albedo

Bond albedo corrected to 0° pha using retrieved ring particle pha functions

Try Two Different Two Component Mixtures

Water Ice and Triton Tholin (irradiation of 0.999:0.001 N2:CH4; bulk substance: $C_3H_5N_4$

Linearly add optical constants and get one single scattering albedo; a single regolith grain is a well mixed combination of components (Cuzzi and Estrada, 1998)

$$n_i = (1 - f_e)n_{io} + f_e n_{ie}$$
$$n_r = (1 - f_e)n_{ro} + f_e n_{re}$$

Separate grains for each component. Calculate single scattering albedo for each. Add together.

$$\boldsymbol{\varpi} = \frac{\boldsymbol{\varpi}_{H_2O} + \varepsilon \boldsymbol{\varpi}_X}{1 + \varepsilon}, \quad \varepsilon = \frac{\mu_x}{\mu_{H_2O}} \frac{\rho_{H_2O}}{\rho_x} \frac{D_{H_2O}}{D_x}$$

 μ = bulk density, ρ = solid density, D = size Assume ρ is same for both (Hapke, 1993)

Free Parameters in Models

Shkuratov Discrete Grain:

- 1. Water ice grain diameter
- 2. Contaminant grain diameter
- 3. Fraction of water ice
- 4. Porosity
- 5. Regolith grain asymmetry parameter

Shkuratov Linear mixture:

- 1. Water ice grain diameter
- 2. Fraction of water ice
- 3. Porosity
- 4. Regolith grain asymmetry parameter

- Hapke Discrete Grain
 - 1. Water ice grain diameter
 - 2. Contaminant grain diameter
 - 3. Fraction of water ice
 - 4. Regolith grain asymmetry parameter
- Hapke Linear Mixture
 - 1. Water ice grain diameter
 - 2. Fraction of water ice
 - 3. Regolith grain asymmetry parameter

Shkuratov Discrete Grain Water Ice Fraction

Hapke Discrete Grain Water Ice Fraction

Explanation

- Shkuratov model uses retrieved ring particle albedo
- This suggests that the ring particle structure, whatever that is, significantly affects scattering properties of rings
- Discrete grains may be "seen" at very short wavelengths

31 Region

Current Research Efforts

Need to learn more about the morphological properties of the rings Try to get something out of opposition effect

Try shape models such as a discrete dipole approximation

Observation of central B ring near 0° phase angle

Questions/Discussion

