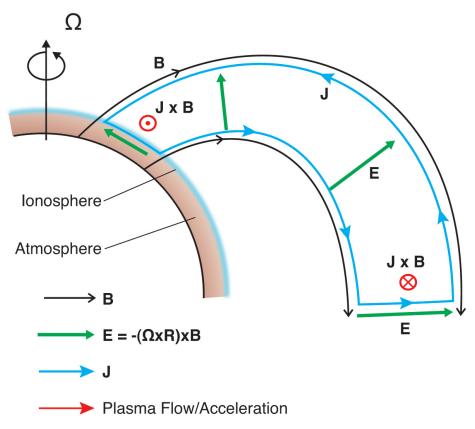
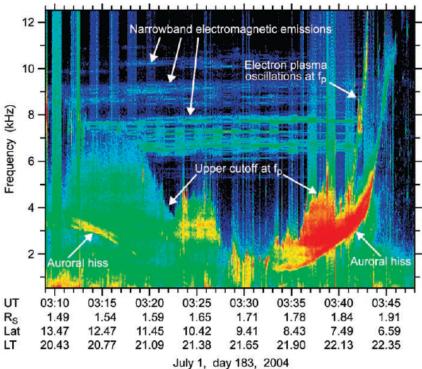

Saturn's other ring current

Frank Crary

Laboratory for Atmospheric and Space Physics University of Colorado, Boulder

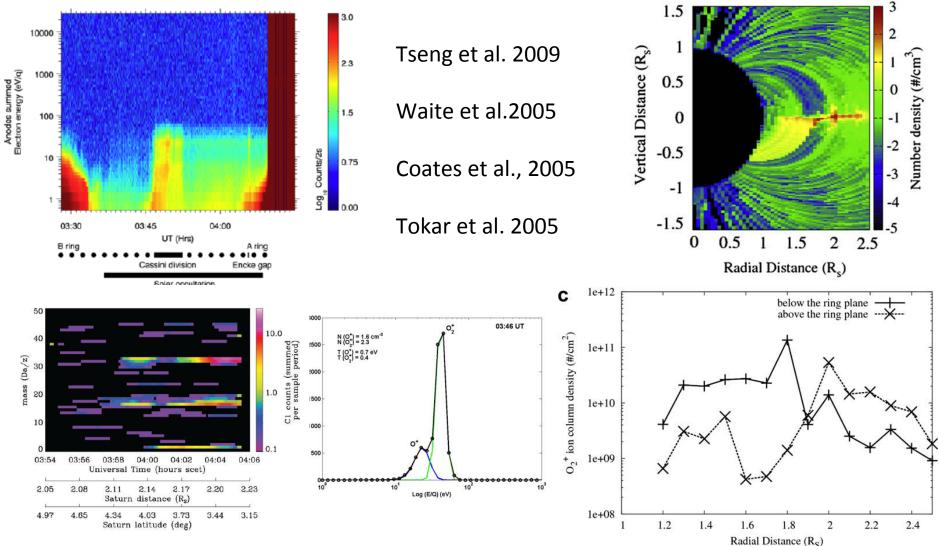

Ring rain or joule heating?

- O'Donoghue et al., 2013 reported structure in H_3^+ emission on magnetic field lines connected to Saturn's main rings
- Interpreted as "ring rain"
 - Precipitation of H_2O or O-bearing species
 - Alters ionospheric chemistry and H_3^+ abundance
- Could also be a result of heating
 - $-H_3^+$ line is thermal emission
 - Could joule heating
- Required input power is unclear
 - Output reported at one H₃⁺ line versus total input power


Ring-ionosphere coupling

- Ring ionosphere is collisionally coupled to the rings
- Saturn's ionosphere is collisionally coupled to the neutral atmosphere
 - Saturn's rotation rate
- Differential motion causes an induced E = - v x B electric field
- Field drives currents across the rings, along magnetic field lines and closing in the Saturn's ionosphere

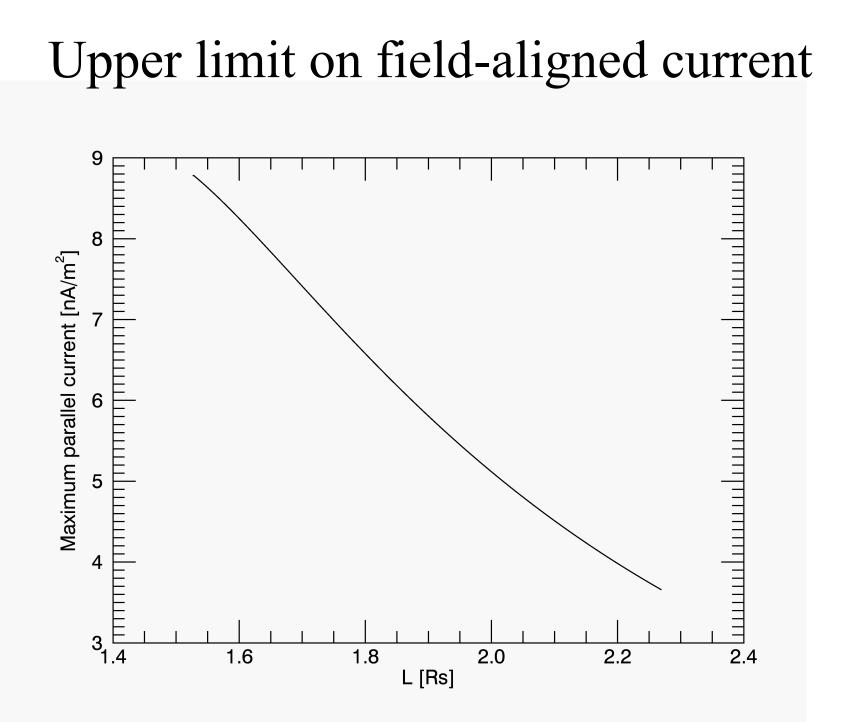
Evidence of field-aligned currents


- Plasma wave observations during Cassini orbital insertion [Gurnett et al., 2005; Xin et al., 2006]
 - Auroral hiss generated by field-aligned electron beams
 - Minimum frequency seen on the same field line as the source electrons
 - Near synchronous orbit
 - Interpreted as evidence of a ring-ionosphere current system
- Electron energy and field-aligned potential must be relatively small (<<1 keV)
 - Otherwise electrons would produce mid-latitude aurora

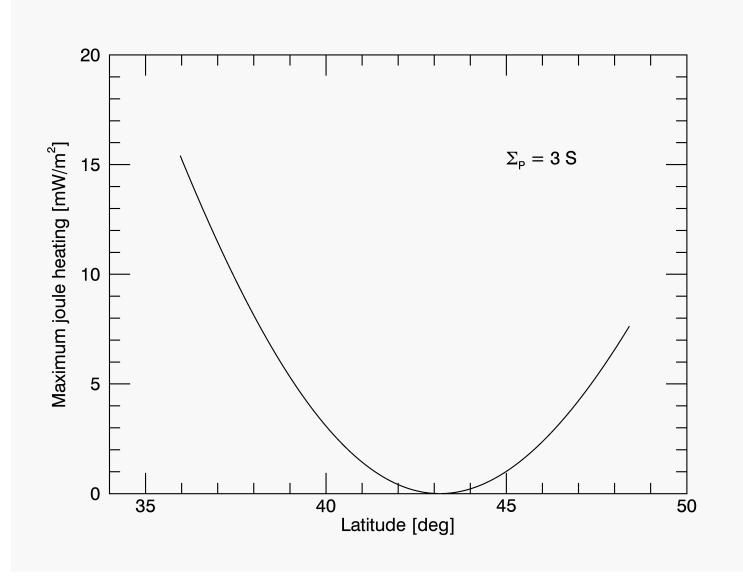
What determines the resulting currents?

- Collisional coupling between ring ionosphere and rings (guess)
 - ion column density * ion mass / ½ orbital period (?)
 - $10^{14} \text{ m}^{-2} * 32 \text{ AMU} / 1.8 \text{x} 10^4 \text{ s} = 3 \text{x} 10^{-16} \text{ kg} \text{-m}^{-2} \text{-s}^{-1}$
- Collisional coupling between Saturn's ionosphere and neutrals
 - Total Electron Content * ion mass * ion-neutral collision at the peak
 - $2x10^{16} \text{ m}^{-2} * 3 \text{ AMU} * 10 \text{ s}^{-1} = 10^{-9} \text{ kg} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \text{ [Moore et al., 2010]}$
- Height-integrated conductance of Saturn's ionosphere
 - 1-10 S (assume 3 S) [Moore et al., 2010]
- Field-aligned potential drops
 - Observed to be small
 - Field-aligned drops would accelerate electrons and produce aurora, which is not observed

Data and models of the ring ionosphere



Upper limit on ring current


- Assume ionosphere-thermosphere coupling is strong
 - Ionosphere does not slip relative to neutrals
 - $-v_{ionosphere} = \Omega r \cos \lambda$
- Assume ring ionosphere-ring coupling is strong
 - Ring ionosphere does not slip relative to rings

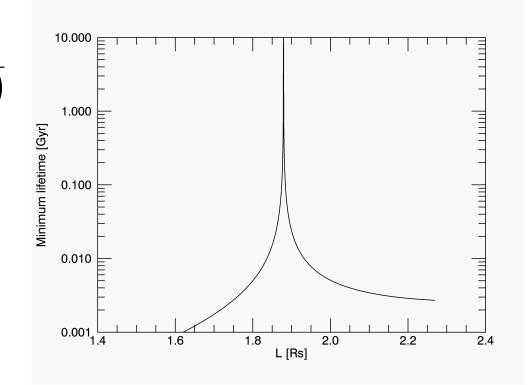
- $v_{ring ionosphere} = (GM/r)^{1/2}$

- Assume ring conductivity is much greater than Saturn's ionospheric conductivity
- These assumptions give the maximum possible current

Upper limit on Joule heating

Problem with the upper limit

Current closes through the ring plane $j_r = -\frac{1}{L^{\frac{1}{2}}} j_{\lambda}$ In the ring plane, there is a torque $T = j_r \frac{B_0}{L^3} r = -\frac{1}{L^{\frac{5}{2}}} j_{\lambda} B_0 R$


For a uniform mass density in the rings, the moment of inertia per area:

$$I = r^{2} \frac{M_{rings}}{\pi \left(R_{outer}^{2} - R_{inner}^{2}\right)} \sim r^{2} \frac{3x10^{19} \text{ kg}}{\pi \left(2.82R^{2}\right)}$$

Timescale for altetring the rings

$$\frac{\omega}{\alpha} = \frac{\sqrt{GM/r}}{T/I}$$

Since the rings are still there, the real current is much less than the upper limit

More general calculation of currents

$$\frac{d\Phi}{dL} = \frac{Rv_{ring ionosphere}B_0}{L^3}$$

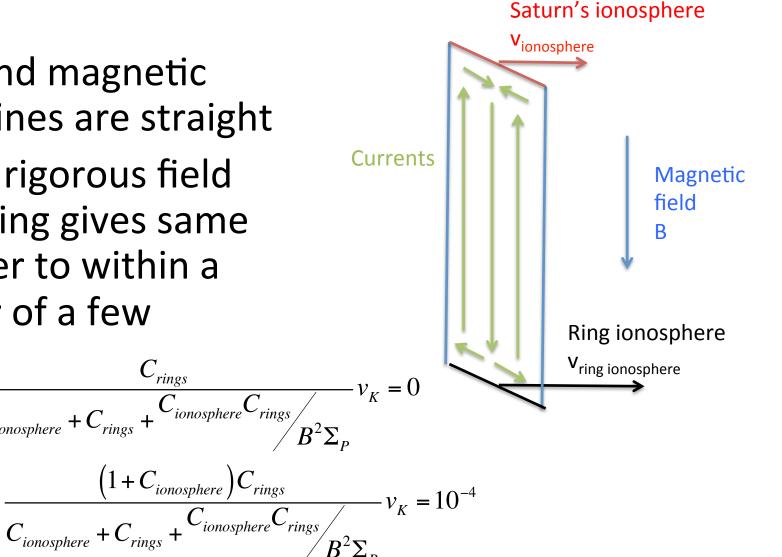
$$j_{\lambda,ionosphere} = \sum_{ionosphere,P} \left(-\frac{2\sin\lambda}{\cos^3\lambda} \frac{v_{ring ionosphere}B_0}{L^3} + v_{ionosphere}B_0 \cos\lambda \right)$$

$$j_{r,rings} = -\frac{1}{L^{1/2}} j_{\lambda,ionosphere}$$

$$0 = \frac{j_{r,rings}B_0}{L^3} + C_{ring-ring ionosphere} \left(\sqrt{\frac{GM}{LR}} - v_{ring ionosphere} \right)$$

$$0 = j_{\lambda,ionosphere}B_0 \cos\lambda + C_{ionosphere-thermosphere} \left(\Omega R \cos\lambda - v_{ionosphere} \right)$$
Plus boundary conditions on j_r at the edges of the rings

Approximate 1D version



 More rigorous field mapping gives same answer to within a factor of a few

 $C_{ionosphere} + C_{rings} +$

 $V_{ionosphere}$

*V*_{ring ionosphere}

Conclusions

- The difference between the ring's velocity and neutral atmosphere's drives a current system
- The ring ionosphere is only weakly coupled to the rings
 Ions should be very close to corotating with the planet
- Maximum current of 100 MA (For $\Sigma_{P,ionosphere} = 3$ S)

– Likely current is under 1 MA

- Joule heating of the ionosphere is small
 - Under 10 μ W/m²
 - May contribute to the H_3^+ observations
- The field-aligned currents density is small and unlikely to produce aurora (which are not observed)